
Working with Tensorflow from
the JVM

How Big Data and Deep Learning can be BFFs
@holdenkarau

https://twitter.com/holdenkarau

Holden:
● My name is Holden Karau
● Prefered pronouns are she/her
● Developer Advocate at Google
● Apache Spark PMC, Beam contributor
● previously IBM, Alpine, Databricks, Google, Foursquare & Amazon
● co-author of Learning Spark & High Performance Spark
● Twitter: @holdenkarau
● Slide share http://www.slideshare.net/hkarau
● Code review livestreams: https://www.twitch.tv/holdenkarau /

https://www.youtube.com/user/holdenkarau
● Spark Talk Videos http://bit.ly/holdenSparkVideos

https://twitter.com/holdenkarau
http://www.slideshare.net/hkarau
https://www.twitch.tv/holdenkarau
https://www.youtube.com/user/holdenkarau
http://bit.ly/holdenSparkVideos

Who is Boo?
● Boo uses she/her pronouns (as I told the Texas house committee)
● Best doge
● Lot’s of experience barking at computers to make them go faster
● Author of “Learning to Bark” & “High Performance Barking”
● On twitter @BooProgrammer

@booprogrammer
Drawn by @impurepics

https://twitter.com/BooProgrammer?lang=en

Why glorious employer (Google) cares
● We have lots of JVM Big Data tools in our ecosystems

○ Apache Beam w/Dataflow, Apache Spark w/Dataproc and more!

● Also GKE can run Apache Spark and Apache Flink, etc.
○ The Spark side still needs some work, but were getting there

● Something something cloud
● This is not like an official position per-se

cuatrok77

Who I think you wonderful humans are?
● Nice enough people
● Don’t mind pictures of cats
● Probably pretty familiar with Spark
● Maybe somewhat familiar with Beam?

Lori Erickson

https://www.flickr.com/photos/lorika/

What will be covered?
● Quick: Big Data Outside the JVM in general
● TensorFlowOn{Spark, Beam+{Spark**, Flink**}}
● Apache Arrow - How this changes “everything”*
● Where we are today in non-JVM support in Beam

○ And why this matters for Tensorflow

** Doesn’t like work yet.

PySpark
● The Python interface to Spark
● Same general technique used as the bases for the C#, R, Julia, etc.

interfaces to Spark
● Fairly mature, integrates well-ish into the ecosystem, less a Pythonrific API
● Has some serious performance hurdles from the design

A quick detour into PySpark’s internals

+ + JSON

TimOve

So what does that look like?

Driver

py4j

Worker 1

Worker K

pipe

pipe

And in flink….

Driver

custom

Worker 1

Worker K

mmap

mmap

So how does that impact Py[X]
\forall X in {Big Data}-{Native Python Big Data}

● Double serialization cost makes everything more
expensive

● Python worker startup takes a bit of extra time
● Python memory isn’t controlled by the JVM - easy to go

over container limits if deploying on YARN or similar
● Error messages make ~0 sense
● Dependency management makes limited sense
● features aren’t automatically exposed, but exposing

them is normally simple

What’s the rest of big data outside the JVM
 look like?
Most of the tools are built in the JVM, so how do we play together?

● Pickling, Strings, JSON, XML, oh my!
● Unix pipes
● Sockets

What about if we don’t want to copy the data all the time?

● Or standalone “pure”* re-implementations of everything
○ Reasonable option for things like Kafka where you would have the I/O regardless.
○ Also cool projects like dask (pure python) -- but hard to talk to existing ecosystem

David Brown

TensorFlowOnSpark, everyone loves mnist!
cluster = TFCluster.run(sc, mnist_dist_dataset.map_fun, args,

args.cluster_size, num_ps, args.tensorboard,

TFCluster.InputMode.SPARK)

if args.mode == "train":

 cluster.train(dataRDD, args.epochs)

Lida

The “future”*: faster interchange
● By future I mean availability today but running it in production is “adventurous”
● Unifying our cross-language experience

○ And not just “normal” languages, CUDA counts yo

Tambako The Jaguar

Andrew Skudder

*Arrow: Spark 2.3 and beyond & GPUs & R & Python & ….

* *

What does the future look like?*

*Source: https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html.

*Vendor
benchmark.
Trust but verify.

https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html

Arrow (a poorly drawn big data view)

Logos trademarks of their respective projects

Juha Kettunen

“future”

Apache Arrow Adoption

@kstirman

https://twitter.com/kstirman

Rewriting your code because why not
spark.catalog.registerFunction(

 "add", lambda x, y: x + y, IntegerType())

=>

add = pandas_udf(lambda x, y: x + y, IntegerType())

Jennifer C.

And we can do this in TFOnSpark*:

unionRDD.foreachPartition(TFSparkNode.train(self.cluster_info,

self.cluster_meta, qname))

Will Transform Into something magical (aka fast but unreliable)

on the next slide!

Delaina Haslam

Which becomes
 train_func = TFSparkNode.train(self.cluster_info,

self.cluster_meta, qname)

 @pandas_udf("int")

 def do_train(inputSeries1, inputSeries2):

 # Sad hack for now

 modified_series = map(lambda x: (x[0], x[1]),

zip(inputSeries1, inputSeries2))

 train_func(modified_series)

 return pandas.Series([0] * len(inputSeries1))

ljmacphee

And this now looks like:

Logos trademarks of their respective projects

Juha Kettunen

How a Python worker looks with Arrow
Paul Harrison

TFOnSpark Possible vNext+1?

● Avoid funneling the data through Python native types
○ For now the Spark Arrow UDFS aren’t perfect for this
○ But we can (and are) improving them

● mmapped Arrow?
● Skip Python on the workers handling data entirely (idk I’m lazy so probably

not)

Renars

Multi-language pipelines?!?
● Totally! I mean kind-of. Spark is ok right?

○ Beam is working on it :) #comejoinus
○ Easier for Python calling Java
○ If SQL counts for sure. If not, yes*.

● Technically what happens when you use Scala Spark + Tensorflow
● And same with Beam, etc.
● Right now painful to write in practice in OSS land outside of libraries

(commercial vendors have some solutions but I stick to OSS when I can)

Jennifer C.

What is/why Sparkling ML
● A place for useful Spark ML pipeline stages to live

○ Including both feature transformers and estimators

● The why: Spark ML can’t keep up with every new algorithm
● Lots of cool ML on Spark tools exist, but many don’t play nice with Spark ML

or together.
● We make it easier to expose Python transformers into Scala land and vice

versa.
● Our repo is at: https://github.com/sparklingpandas/sparklingml

https://github.com/sparklingpandas/sparklingml

So what goes in startup.py?

● A class for our Java code to call with parameters &
request functions

● Code to take the Python UDFS and construct/return the
underlying Java UDFS

● A main function to startup the Py4J gateway & Spark
context to serialize our functions in the way that is
expected

● Pretty much it’s just boilerplate but you can take a look if
you want.

Jennifer C.

https://github.com/sparklingpandas/sparklingml/blob/master/sparklingml/startup.py
https://github.com/sparklingpandas/sparklingml/blob/master/sparklingml/startup.py

So what goes in startup.py?
class PythonRegistrationProvider(object):

 class Java:

 package = "com.sparklingpandas.sparklingml.util.python"

 className = "PythonRegisterationProvider"

 implements = [package + "." + className]

Jennifer C.

So what goes in startup.py?
 def registerFunction(self, ssc, jsession, function_name,

params):

 setup_spark_context_if_needed()

 if function_name in functions_info:

 function_info = functions_info[function_name]

 evaledParams = ast.literal_eval(params)

 func = function_info.func(*evaledParams)

 udf = UserDefinedFunction(func, ret_type,

make_registration_name())

 return udf._judf

 else:

 print("Could not find function")

 # We do this rather than raising an exception since

Py4J + exceptions is hard

 return None

Jennifer C.

What’s the boilerplate in Java?

● Call Python
● A trait representing the Python entry point
● Wrapping the UDFS in Spark ML stages (optional buuut

nice?)
● Also kind of boring, its in a few files if you want to look.

https://github.com/sparklingpandas/sparklingml/tree/master/src/main/scala/com/sparklingpandas/sparklingml/util/python

Ok first more wordcount

With Spacy now! Non-English language support!
 def inner(inputSeries):

 """Tokenize the inputString using spacy for

 the provided language."""

 nlp = SpacyMagic.get(lang)

 def tokenizeElem(elem):

 return list(map(lambda token: token.text,

list(nlp(unicode(elem)))))

 return inputSeries.apply(tokenizeElem)

PROJennifer C.

And from the JVM:

 val transformer = new SpacyTokenizePython()
 transformer.setLang("en")
 val input = spark.createDataset(
 List(InputData("hi boo"), InputData("boo")))
 transformer.setInputCol("input")
 transformer.setOutputCol("output")
 val result = transformer.transform(input).collect()

Alexy Khrabrov

Sparkling ML Mixed Language Pipeline

SparkDeepLearning Pipelines

● Easier to work with than TensorFlowOnSpark for many people
● Good for “transfer learning”, not for completely new models

○ This thing is good at finding cats, maybe we can find dogs with it!
● Also powered by DataFrames (yay!)
● We can do the same tricks to make it work with Arrow
● You can use it with Spark’s feature prep stages if you try hard enough
● We can expose it in Scala in a few ways….

○ See “Deploying models as SQL functions” + Sparkling ML + PyArrow
:p

○ Future/other ways: Tensorflow Scala + compile graph + pass down?

ivva

SparkDeepLearning + Sparkling ML*
class DLImagePredictor(BasicTransformationFunction):

 @classmethod

 def func(cls, *args):

 deepimagepredictor = DeepImagePredictor(*args)

 class MyFunction(LegacyTransformationFunction):

 def transform_df(self, jdf):

 df = javadf_to_pydf(jdf)

 return deepimagepredictor.transform(df)._jdf

*Emphasis on the * here, needs some more details

Scala side*

class SDLImagePredictorPython(override val uid: String) extends

BasicPythonTransformer {

 final val modelName = new Param[String](this, "modelName",

"model")

 /** @group getParam */

 final def getModelName: String = $(modelName)

*Emphasis on the * here, needs some more details

Scala side*
 final def setModelName(value: String): this.type =

set(this.modelName, value)

 def this() =

this(Identifiable.randomUID("SDLImagePredictorPython"))

 override val pythonFunctionName = "sdldip"

 override def copy(extra: ParamMap) = {

 defaultCopy(extra)

 }

*Emphasis on the * here, needs some more details

Scala side*
 def miniSerializeParams() = {

 "[\"" + $(inputCol) +"\",\"" + $(outputCol) + "\",\"" +

$(modelName) + "\"]"

 }

*Emphasis on the * here, needs some more details

A possible future

Logos trademarks of their respective projects

Lambdas/graphsData

DL4J & Friends

● Totally an option too
● I’m like a solid 50% sure they support Arrow some of the time (although not

completely sure - take a look in the repo).
● More than just transfer learning

Nick Otto

https://github.com/deeplearning4j/DataVec/blob/master/datavec-arrow/src/main/java/org/datavec/arrow/recordreader/ArrowWritableRecordBatch.java

TensorFlow isn’t enough on its own

● Enter TFX & friends like Kubeflow
○ Current related TFX OSS components: TF.Transform TF.Serving (with

more coming)
● Alternatives: piles of custom code re-created at serving time.

○ Yay job security?

PROJennifer C.

https://research.google.com/pubs/pub46484.html
https://github.com/kubeflow/kubeflow
https://github.com/tensorflow/transform
https://www.tensorflow.org/serving/

Another possible future

Logos trademarks of their respective projects

LambdasData

TF.Transform

● For pre-processing of your data
○ e.g. where you spend 90% of your dev time anyways

● Integrates into serving time :D
● OSS
● Runs on top of Apache Beam but doesn’t (currently) work outside of GCP

○ #wereworkingonitipromise

PROKathryn Yengel

Defining a Transform processing function
def preprocessing_fn(inputs):

 x = inputs['x']

 y = inputs['y']

 s = inputs['s']

 x_centered = x - tft.mean(x)

 y_normalized = tft.scale_to_0_1(y)

 s_int = tft.string_to_int(s)

 return { 'x_centered': x_centered,

 'y_normalized': y_normalized, 's_int': s_int}

mean stddev

normalize
multiply

quantiles

bucketize

Analyzers

Reduce (full pass)

Implemented as a distributed
data pipeline

Transforms

Instance-to-instance (don’t
change batch dimension)

Pure TensorFlow

Analyze
normalize

multiply

bucketize

constant
tensors

data

mean stddev

normalize
multiply

quantiles

bucketize

Scale to ... Bag of Words / N-Grams

Bucketization Feature Crosses

tft.ngrams

tft.string_to_int

tf.string_split
tft.scale_to_z_score

tft.apply_buckets

tft.quantiles

tft.string_to_int

tf.string_join

...

Some common use-cases...

BEAM Beyond the JVM: Current release
● Non JVM BEAM doesn’t work outside of Google’s environment yet
● tl;dr : uses grpc / protobuf

○ Similar to the common design but with more efficient representations (often)

● But exciting new plans to unify the runners and ease the support of different
languages (called SDKS)

○ See https://beam.apache.org/contribute/portability/

● If this is exciting, you can come join me on making BEAM work in Python3
○ Yes we still don’t have that :(
○ But we're getting closer & you can come join us on BEAM-2874 :D

Emma

https://beam.apache.org/contribute/portability/
https://issues.apache.org/jira/browse/BEAM-2784

BEAM Beyond the JVM: Master branch
● Common interface for setting up jobs
● Portability framework allows SDK harnesses in arbitrary to be kicked off
● Runners ship in their own docker containers (goodbye dependency hell, hello

container hell)
● Hacked up Python SDK to sort of talk to the new interface

Nick

BEAM Beyond the JVM: Master branch

*ish

*ish

Random branch
*ish

Nick

portability

*ish

BEAM Beyond the JVM: The “future”
e.g. not now

*ish

*ish

*ish

Nick

portability

*ish

*ish

So how TF does this relate to TF?
● Tensorflow is in Python (kind of)
● Once we finish the Python SDK on Beam on Flink adventure you can use all

sorts of cool libraries (like TFX) to do your tensorflow work
○ You can use them today too if your use case is on Dataflow

● You will be able manage your dependencies
● You will be able to (in theory) re-use dataprep code at serving time

○ 80% less copy n’ paste code with slight mistakes that get out of date!**

● No that doesn’t work today
● Or tomorrow
● But… eventually

○ Standard OSS excuse “patches welcome” (sort of if you can find the branch :p)

**Not a guarantee, see your vendor for details.

https://cloud.google.com/dataflow/

References
● TensorFlowOnSpark -https://github.com/yahoo/TensorFlowOnSpark
● Spark Deep Learning Pipelines -

https://github.com/databricks/spark-deep-learning
● flink-tensorflow - https://github.com/FlinkML/flink-tensorflow
● TF.Transform - https://github.com/tensorflow/transform
● Beam portability design: https://beam.apache.org/contribute/portability/
● Beam on Flink + portability https://issues.apache.org/jira/browse/BEAM-2889

& https://github.com/bsidhom/beam/tree/hacking-job-server

PROR. Crap Mariner

https://github.com/yahoo/TensorFlowOnSpark
https://github.com/databricks/spark-deep-learning
https://github.com/FlinkML/flink-tensorflow
https://github.com/tensorflow/transform
https://beam.apache.org/contribute/portability/
https://issues.apache.org/jira/browse/BEAM-2889
https://github.com/bsidhom/beam/tree/hacking-job-server

High Performance Spark!

You can buy it today! On the internet!

Only one chapter focused on non-JVM stuff, I’m sorry. But
don’t let that stop you.

Cats love it*

*Or at least the box it comes in. If buying for a cat, get print
rather than e-book.

And some upcoming talks:

● June
○ FOSS Backstage - Dealing with contributor overload
○ Scala Days NYC - Missed out on Scala Days EU? Come to NYC!

● July
○ Possible PyData Meetup in Amsterdam (tentative)
○ Curry on Amsterdam
○ OSCON Portland

● August
○ JupyterCon NYC

● September
○ Strata NYC
○ Strangeloop STL

k thnx bye :)

If you care about Spark testing and
don’t hate surveys:
http://bit.ly/holdenTestingSpark

I need to give a testing talk next
month, help a “friend” out.

Will tweet results
“eventually” @holdenkarau

Do you want more realistic
benchmarks? Share your UDFs!
http://bit.ly/pySparkUDF

Pssst: Have feedback on the presentation? Give me a
shout (holden@pigscanfly.ca) if you feel comfortable doing
so :)

Give feedback on this presentation
http://bit.ly/holdenTalkFeedback

http://bit.ly/holdenTestingSpark
https://twitter.com/holdenkarau
http://bit.ly/pySparkUDF
mailto:holden@pigscanfly.ca
http://bit.ly/holdenTalkFeedback

(Optional) Beam Demo Time!!!!!
● Word count!!!!!! So amazing!!!!!!!!!
● Based on my testing last Friday there is a 2 in 3 chance this will hard lock my

computer
● That’s your friendly reminder not to run any of this in production
● Demo shell script of fun (go only) & python + go

https://gist.github.com/holdenk/8119ddc7bd90407e0b184df7e958933c
https://gist.github.com/holdenk/8ecd61875974489269643a7af2ea1820

Hadoop “streaming” (Python/R)
● Unix pipes!
● Involves a data copy, formats get sad
● But the overhead of a Map/Reduce task is pretty high anyways...

Lisa Larsson

Kafka: re-implement all the things
● Multiple options for connecting to Kafka from outside of the JVM (yay!)
● They implement the protocol to talk to Kafka (yay!)
● This involves duplicated client work, and sometimes the clients can be slow

(solution, FFI bindings to C instead of Java)
● Buuuut -- we can’t access all of the cool Kafka business (like Kafka Streams)

and features depend on client libraries implementing them (easy to slip below
parity)

Smokey Combs

Dask: a new beginning?
● Pure* python implementation
● Provides real enough DataFrame interface for distributed data
● Also your standard-ish distributed collections
● Multiple backends
● Primary challenge: interacting with the rest of the big data ecosystem

○ Arrow & friends might make this better with time too, buuut….

● See https://dask.pydata.org/en/latest/ &
http://dask.pydata.org/en/latest/spark.html

Lisa Zins

https://dask.pydata.org/en/latest/
http://dask.pydata.org/en/latest/spark.html

