
- FABIAN HUESKE, SOFTWARE ENGINEER

WHY AND HOW TO LEVERAGE 
THE POWER AND SIMPLICITY OF 
SQL ON APACHE FLINK®



© 2018 data Artisans2

ABOUT ME

• Apache Flink PMC member & ASF member
‒Contributing since day 1 at TU Berlin
‒Focusing on Flink’s relational APIs since ~2.5 years

•Co-author of “Stream Processing with Apache Flink”
‒Work in progress…

•Co-founder & Software Engineer at data Artisans



© 2018 data Artisans3

ABOUT DATA ARTISANS

Original creators of
Apache Flink® 

Open Source Apache Flink
+ dA Application Manager



© 2018 data Artisans4

DA PLATFORM

data-artisans.com/download



© 2018 data Artisans5

WHAT IS APACHE FLINK?

Batch Processing
process static and

historic data

Data Stream 
Processing
realtime results

from data streams

Event-driven
Applications
data-driven actions

and services

Stateful Computations Over Data Streams



© 2018 data Artisans6

WHAT IS APACHE FLINK?
Stateful computations over streams

real-time and historic
fast, scalable, fault tolerant, in-memory,

event time, large state, exactly-once



© 2018 data Artisans7

HARDENED AT SCALE

Streaming Platform Service
billions messages per day

A lot of Stream SQL

Streaming Platform as a Service
3700+ container running Flink,

1400+ nodes, 22k+ cores, 100s of jobs,
3 trillion events / day, 20 TB state

Fraud detection
Streaming Analytics Platform

1000s jobs, 100.000s cores, 
10 TBs state, metrics, analytics,

real time ML,
Streaming SQL as a platform



© 2018 data Artisans8

POWERED BY APACHE FLINK



© 2018 data Artisans9

FLINK’S POWERFUL ABSTRACTIONS

Process Function (events, state, time)

DataStream API (streams, windows)

SQL / Table API (dynamic tables)

Stream- & Batch 
Data Processing

High-level
Analytics API

Stateful Event-
Driven Applications

val stats = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { … }

out.collect(…) // emit events
state.update(…) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

}

Layered abstractions to
navigate simple to complex use cases



© 2018 data Artisans10

APACHE FLINK’S RELATIONAL APIS

Unified APIs for batch & streaming data

A query specifies exactly the same result 
regardless whether its input is 

static batch data or streaming data.

tableEnvironment
.scan("clicks")
.groupBy('user)
.select('user, 'url.count as 'cnt)

SELECT user, COUNT(url) AS cnt
FROM clicks
GROUP BY user

LINQ-style Table API ANSI SQL



© 2018 data Artisans11

QUERY TRANSLATION

tableEnvironment
.scan("clicks")
.groupBy('user)
.select('user, 'url.count as 'cnt)

SELECT user, COUNT(url) AS cnt
FROM clicks
GROUP BY user

Input data is 
bounded

(batch)

Input data is 
unbounded
(streaming)



© 2018 data Artisans12

WHAT IF “CLICKS” IS A FILE?

Clicks

user cTime url
Mary 12:00:00 https://…

Bob 12:00:00 https://…

Mary 12:00:02 https://…

Liz 12:00:03 https://…

user cnt

Mary 2

Bob 1

Liz 1

SELECT 
user, 
COUNT(url) as cnt

FROM clicks
GROUP BY user

Input data is 
read at once

Result is 
produced at once



© 2018 data Artisans13

WHAT IF “CLICKS” IS A STREAM?

user cTime url
user cnt

SELECT 
user, 
COUNT(url) as cnt

FROM clicks
GROUP BY user

Clicks

Mary 12:00:00 https://…

Bob 12:00:00 https://…

Mary 12:00:02 https://…

Liz 12:00:03 https://…

Bob 1

Liz 1

Mary 1Mary 2

Input data is 
continuously read

Result is 
continuously updated

The result is the same!



© 2018 data Artisans14

• Usability
‒ANSI SQL syntax: No custom “StreamSQL” syntax.
‒ANSI SQL semantics: No stream-specific results.

• Portability
‒ Run the same query on bounded and unbounded data
‒ Run the same query on recorded and real-time data

• How can we achieve SQL semantics on streams?

now

bounded	query

unbounded	query

past future

bounded	query

start	of	the	stream
unbounded	query

WHY IS STREAM-BATCH UNIFICATION 
IMPORTANT?



© 2018 data Artisans15

•Materialized views (MV) are similar to regular views, 
but persisted to disk or memory
‒Used to speed-up analytical queries
‒MVs need to be updated when the base tables change

•MV maintenance is very similar to SQL on streams
‒Base table updates are a stream of DML statements
‒MV definition query is evaluated on that stream
‒MV is query result and continuously updated

DATABASE SYSTEMS RUN QUERIES ON STREAMS



© 2018 data Artisans16

CONTINUOUS QUERIES IN FLINK

•Core concept is a “Dynamic Table”
‒Dynamic tables are changing over time

•Queries on dynamic tables
‒produce new dynamic tables (which are updated based on input)
‒do not terminate

• Stream ↔ Dynamic table conversions

16



© 2018 data Artisans17

STREAM ↔ DYNAMIC TABLE CONVERSIONS

• Append Conversions
‒Records are only inserted/appended

•Upsert Conversions
‒Records are inserted/updated/deleted
‒Records have a (composite) unique key

•Changelog Conversions
‒Records are inserted/updated/deleted



© 2018 data Artisans18

SQL FEATURE SET IN FLINK 1.5.0

• SELECT FROM WHERE
• GROUP BY / HAVING
‒Non-windowed, TUMBLE, HOP, SESSION windows

• JOIN
‒Windowed INNER, LEFT / RIGHT / FULL OUTER JOIN
‒Non-windowed INNER JOIN

• Scalar, aggregation, table-valued UDFs
• SQL CLI Client (beta)

• [streaming only] OVER / WINDOW
‒UNBOUNDED / BOUNDED PRECEDING

• [batch only] UNION / INTERSECT / EXCEPT / IN / ORDER BY



© 2018 data Artisans19

WHAT CAN I BUILD WITH THIS?

• Data Pipelines
‒Transform, aggregate, and move events in real-time

• Low-latency ETL
‒Convert and write streams to file systems, DBMS, K-V stores, 

indexes, …
‒ Ingest appearing files to produce streams

• Stream & Batch Analytics
‒Run analytical queries over bounded and unbounded data
‒Query and compare historic and real-time data

• Power Live Dashboards
‒Compute and update data to visualize in real-time



© 2018 data Artisans20

THE NEW YORK TAXI RIDES DATA SET

• The New York City Taxi & Limousine Commission provides a public 
data set about past taxi rides in New York City

• We can derive a streaming table from the data

• Table: TaxiRides

rideId: BIGINT // ID of the taxi ride
isStart: BOOLEAN // flag for pick-up (true) or drop-off (false) event
lon: DOUBLE // longitude of pick-up or drop-off location
lat: DOUBLE // latitude of pick-up or drop-off location
rowtime: TIMESTAMP // time of pick-up or drop-off event



© 2018 data Artisans21

SELECT cell, 
isStart,
HOP_END(rowtime, INTERVAL '5' MINUTE, INTERVAL '15' MINUTE) AS hopEnd,
COUNT(*) AS cnt

FROM (SELECT rowtime, isStart, toCellId(lon, lat) AS cell
FROM TaxiRides)

GROUP BY cell, 
isStart,
HOP(rowtime, INTERVAL '5' MINUTE, INTERVAL '15' MINUTE)

§ Compute every 5 minutes for each location the 
number of departing and arriving taxis
of the last 15 minutes.

IDENTIFY POPULAR PICK-UP / DROP-OFF 
LOCATIONS



© 2018 data Artisans22

SELECT pickUpCell,
AVG(TIMESTAMPDIFF(MINUTE, e.rowtime, s.rowtime) AS avgDuration

FROM (SELECT rideId, rowtime, toCellId(lon, lat) AS pickUpCell
FROM TaxiRides
WHERE isStart) s

JOIN
(SELECT rideId, rowtime
FROM TaxiRides
WHERE NOT isStart) e

ON s.rideId = e.rideId AND
e.rowtime BETWEEN s.rowtime AND s.rowtime + INTERVAL '1' HOUR

GROUP BY pickUpCell

§ Join start ride and end ride events on rideId and 
compute average ride duration per pick-up location.

AVERAGE RIDE DURATION PER PICK-UP 
LOCATION



© 2018 data Artisans23

BUILDING A DASHBOARD

Elastic
Search

Kafka

SELECT cell, 
isStart,
HOP_END(rowtime, INTERVAL '5' MINUTE, INTERVAL '15' MINUTE) AS hopEnd,
COUNT(*) AS cnt

FROM (SELECT rowtime, isStart, toCellId(lon, lat) AS cell
FROM TaxiRides)

GROUP BY cell, 
isStart,
HOP(rowtime, INTERVAL '5' MINUTE, INTERVAL '15' MINUTE)



© 2018 data Artisans24

SOUNDS GREAT! HOW CAN I USE IT?

• SQL queries must be embedded in Java/Scala code L
‒ Tight integration with DataStream and DataSet APIs

• Until Flink 1.4.0, the community focused on SQL support
‒Operators, types, built-in functions, extensibility (UDFs, extern. catalog)
‒ Proven at scale by Alibaba, Huawei, and Uber
‒All built their own submission system & connectors library

• Community neglected user interfaces
‒No query submission client, no CLI
‒No integration with common catalog services
‒ Limited set of TableSources and TableSinks



© 2018 data Artisans25

NEW IN FLINK 1.5.0 - SQL CLI (BETA)

Demo Time!

That’s a nice toy, but …
... can I use it for anything serious?



© 2018 data Artisans26

FLIP-24 – A SQL QUERY SERVICE

• REST service to submit & manage SQL queries
‒ SELECT …
‒ INSERT INTO SELECT …
‒ CREATE MATERIALIZE VIEW …

• Serve results of “SELECT …” queries

• Provide a table catalog (integrated with external catalogs)

• Use cases 
‒ Data exploration with notebooks like Apache Zeppelin
‒ Access to real-time data from applications
‒ Easy data routing / ETL from management consoles



© 2018 data Artisans27

CHALLENGE: SERVE DYNAMIC TABLES

Unbounded input yields unbounded results

SELECT user, COUNT(url) AS cnt
FROM clicks
GROUP BY user

SELECT user, url
FROM clicks
WHERE url LIKE '%xyz.com'

Append-only Table
• Result rows are never changed
• Consume, buffer, or drop rows 

Continuously updating Table
• Result rows can be updated or 

deleted
• Consume changelog or 

periodically query result table
• Result table must be maintained

somewhere

(Serving bounded results is easy)



© 2018 data Artisans28

Application

FLIP-24 – A SQL QUERY SERVICE

Query Service

Catalog

Optimizer

Database / 
HDFS

Event Log
External Catalog

(Schema Registry, 
HCatalog, …)

Query
Results

Submit Query Job

State

REST

Result Server

Submit QueryREST

Database / 
HDFS

Event Log

SELECT
user, 
COUNT(url) AS cnt

FROM clicks
GROUP BY user

Results are served by Query Service via REST
+ Application does not need a special client
+ Works well in many network configurations
− Query service can become bottleneck



© 2018 data Artisans29

Application

FLIP-24 – A SQL QUERY SERVICE

Query Service

SELECT
user, 
COUNT(url) AS cnt

FROM clicks
GROUP BY user Catalog

Optimizer

Database / 
HDFS

Event Log
External Catalog

(Schema Registry, 
HCatalog, …)

QuerySubmit Query Job

State

REST

Result Server

Submit QueryREST

Database / 
HDFS

Event Log

Serving
Library

Result Handle



© 2018 data Artisans30

WE WANT YOUR FEEDBACK!

• The design of SQL Query Service is not final yet.

•Check out FLIP-24 and FLINK-7594

• Share your ideas and feedback and discuss on 
JIRA or dev@flink.apache.org.



© 2018 data Artisans31

SUMMARY

•Unification of stream and batch is important.

• Flink’s SQL solves many streaming and batch use cases.
• Runs in production at Alibaba, Uber, and others.

• The community is working on improving user interfaces.
•Get involved, discuss, and contribute!



© 2018 data Artisans32



THANK YOU!

Available on O’Reilly Early Release!



THANK YOU!
@fhueske
@dataArtisans
@ApacheFlink

WE ARE HIRING
data-artisans.com/careers


