WHY AND HOW TO LEVERAGE
THE POWER AND SIMPLICITY OF
SQL ON APACHE FLINK®

FABIAN HUESKE, SOFTWARE ENGINEER

dataArtisans

ABOUT ME

* Apache Flink PMC member & ASF member

—Contributing since day 1 at TU Berlin
—Focusing on Flink’s relational APls since ~2.5 years

* Co-author of “Stream Processing with Apache Flink”
—Work in progress...

* Co-founder & Software Engineer at data Artisans

ABOUT DATA ARTISANS

PLATFORM

Original creators of Open Source Apache Flink
Apache Flink® + dA Application Manager

4

DA PLATFORM

-
e

Streams from

i Kafka, Kinesis,

S3, HDFS, —.-

databases, ...

B [B RE B B v] R
Capital Risk . Master Data Fraud Real-time |
Management | i Recommendations LManagement Detection J ML/ Al ' Bl / Ops
' L]
- - L) J

—
1

\

- -

i

dA Application

Application lifecycle

P

dA Platform

0

B Logging

0
Apache Flink

Stateful stream processing

Manager

management

i17] Metrics

&} e

] | i
| —
Dl |

- ||

v

Kubernetes
Container platform

data-artisans.com/download

© 2018 data Artisans

WHAT IS APACHE FLINK?

Data Stream

Processin]
J Event-driven

Batch Processing Aol
pplications

realtime results

. from data streams
process static and

historic data data-driven actions

and services

4

"

Stateful Computations Over Data Streams

5 © 2018 data Artisans

6

WHAT IS APACHE FLINK?

Stateful computations over streams

Transactions

)

Logs

»

10T

v

Clicks

real-time and historic

fast, scalable, fault tolerant, in-memory,
event time, large state, exactly-once

(Real-time)
Events

- (nmn—

| g

© 2018 data Artisans

vV vV
N

Database,
File System,
KV-Store

Event-driven Streaming Stream & Batch
Applications Pipelines Analytics

Pl =

\

Resources | Storage

(K8s, Yarn, Mesos, ...) | (HDFS, S3, NFS, ...)

—

Application

Event Log

Database,
File System,
KV-Store

HARDENED AT SCALE
UBER

Streaming Platform Service

billions messages per day
A lot of Stream SQL

€.

Alibaba Group

1000s jobs, 100.000s cores,
10 TBs state, metrics, analytics,
real time ML,
Streaming SQL as a platform

NETFLIX

Streaming Platform as a Service

3700+ container running Flink,

1400+ nodes, 22k+ cores, 100s of jobs,
3 trillion events / day, 20 TB state

Fraud detection
Streaming Analytics Platform

POWERED BY APACHE FLINK

Alibaba Group

NETFLIX UBER

'\@ "cln's' élc; accenture @ Expedia

DLLENVC yelpSs [T12. &

aMaDEUS LINE Telefonica

e el relayr.

@ o
bol.com SK telecom OVH.com

S

HUAWEI

ebay

D_
TRB

bouygu@;\.’

Better\éloud

/)

COMCAST

I

Capn‘a/lOne“’

» zalando

otto group

FLINK'S POWERFUL ABSTRACTIONS

Layered abstractions to
navigate Simp|e tO Comp|ex use cases SELECT room, TUMBLE_END(rowtime, INTERVAL '1' HOUR), AVG(temp)

FROM sensors
GROUP BY TUMBLE(rowtime, INTERVAL '1' HOUR), room

High-level

Analytics API SQL / Table API (dynamic tables)

Stream- & Batch
Data Processing

NIt Ao Process Function (events, state, time)

Driven Applications

val stats = stream

. .keyBy("sensor")
DataStream API (streams, windows) timelindow(Time.seconds(5))

.sum((a, b) -> a.add(b))

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, .value) match { .. }

out.collect(..) // emit events
.update(..) // modify state

// schedule a timer callback

7 © 2018 data Artisans ctx.timerService.registerEventTimeTimer(event.timestamp + 500) L

APACHE FLINK'S RELATIONAL APIS

ANSI SQL LINQ-style Table API
tableEnvironment

SELECT user, COUNT(url) AS cnt .scan("clicks")

FROM clicks .groupBy('user)

GROUP BY user .select('user, 'url.count as 'cnt)

Unified APIs for batch & streaming data

A query specifies exactly the same result
regardless whether its input is
static batch data or streaming data.

10 © 2018 data Artisans

QUERY TRANSLATION

ﬂ
tableEnvironment ,3 - 3
.scan("clicks") oide Ay g % ;S 78—67:-— SELECT user, COUNT(url) As cnt
.groupBy('user) ;é_ _g FROM clicks
.select('user, 'url.count as 'cnt) Gl “‘5 =) : Query | GROUP BY user
: .

Input data is . | wizel , ‘ Input data is
bounded ' : N\ = | unbounded
(batch)

(streaming)

11 | © 2018 data Artisans $é&&*

WHAT IF “"CLICKS"” IS A FILE?

\

Cuser | crime | ui

12:00:00 | https://...
12:00:02 | https://...

Input data is
read at once

Result is
produced at once

-

12:00:03 | https://...
S

12 © 2018 data Artisans

o

SELECT

user,
COUNT(url) as cnt

FROM clicks
GROUP BY user

~

J

WHAT IF “CLICKS" IS A STREAM?

Result is
continuously updated

Input data is
continuously read

Cuser |ctme | ——u
https://... _’[SELECT \ m“

|ty o o
https://... — FROM clizlr(‘s) = —-
https://... —\(EROUP BY user j—

The result is the samel!

13 © 2018 data Artisans

WHY IS STREAM-BATCH UNIFICATION
IMPORTANT?

e Usability
—ANSI SQL syntax: No custom “StreamSQL" syntax.
— ANSI SQL semantics: No stream-specific results.

* Portability
—Run the same query on bounded and unbounded data
—Run the same query on recorded and real-time data

| «— bounded query — | « bounded query ———

| start of the stream <+----=====--- past now future =—----————m e
|

. «<—— unbounded query

| «—— unbounded query

« How can we achieve SQL semantics on streams?

14 | © 2018 data Artisans

DATABASE SYSTEMS RUN QUERIES ON STREAMS

* Materialized views (MV) are similar to regular views,
but persisted to disk or memory
—Used to speed-up analytical queries
—MVs need to be updated when the base tables change

* MV maintenance is very similar to SQL on streams
—Base table updates are a stream of DML statements
—MV definition query is evaluated on that stream
—MV is query result and continuously updated

CONTINUOUS QUERIES IN FLINK

* Core concept is a “Dynamic Table”
—Dynamic tables are changing over time

* Queries on dynamic tables
—produce new dynamic tables (which are updated based on input)
—do not terminate

* Stream > Dynamic table conversions

| =T 2 -
T o [Breamit | [t P g
SM‘""'@ I e Queyy [Dot || P (Y Sheam
ol

STREAM < DYNAMIC TABLE CONVERSIONS

* Append Conversions
—Records are only inserted/appended

» Upsert Conversions

—Records are inserted/updated/deleted
—Records have a (composite) unique key

* Changelog Conversions
—Records are inserted/updated/deleted

SQL FEATURE SET IN FLINK 1.5.0

* SELECT FROM WHERE

« GROUP BY / HAVING
—Non-windowed, TUMBLE, HOP, SESSION windows

* JOIN
—Windowed INNER, LEFT / RIGHT / FULL OUTER JOIN
—Non-windowed INNER JOIN

» Scalar, aggregation, table-valued UDFs
« SQL CLI Client (beta)

* [streaming only] OVER / WINDOW
—UNBOUNDED / BOUNDED PRECEDING

* [batch only] UNION / INTERSECT / EXCEPT / IN / ORDER BY

18 | © 2018 data Artisans L.

WHAT CAN | BUILD WITH THIS?

* Data Pipelines
—Transform, aggregate, and move events in real-time '

Sheam () _»ci\/ Rovend?, @»(@
* Low-latency ETL el &)

—Convert and write streams to file systems, DBMS, K-V stores,
indexes, .

—Ingest appearing files to produce streams

* Stream & Batch Analytics
—Run analytical queries over bounded and unbounded data

—Query and compare historic and real-time data _ @ @;&@
-) B | >] S0 —
» Power Live Dashboards o MR (s

— Compute and update data to visualize in real-time & s

THE NEW YORK TAXI RIDES DATA SET

* The New York City Taxi & Limousine Commission provides a public
data set about past taxi rides in New York City

* We can derive a streaming table from the data

» Table: TaxiRides

rideld:
isStart:
lon:
lat:
rowtime:

BIGINT
BOOLEAN
DOUBLE
DOUBLE
TIMESTAMP

// ID of the taxi ride

// flag for pick-up (true) or drop-off (false) event
// longitude of pick-up or drop-off location

// latitude of pick-up or drop-off location

// time of pick-up or drop-off event

IDENTIFY POPULAR PICK-UP / DROP-OFF
LOCATIONS

= Compute every 5 minutes for each location the
number of departing and arriving taxis
of the last 15 minutes.

SELECT cell,
isStart,
HOP_END(rowtime, INTERVAL '5' MINUTE, INTERVAL '15' MINUTE) AS hopEnd,
COUNT(*) AS cnt
FROM (SELECT rowtime, isStart, toCellId(lon, lat) AS cell
FROM TaxiRides)
GROUP BY cell,
isStart,
HOP(rowtime, INTERVAL '5' MINUTE, INTERVAL '15' MINUTE)

21 © 2018 data Artisans L.

AVERAGE RIDE DURATION PER PICK-UP
LOCATION

= Join start ride and end ride events on rideld and
compute average ride duration per pick-up location.

SELECT pickUpCell,
AVG(TIMESTAMPDIFF(MINUTE, e.rowtime, s.rowtime) AS avgDuration
FROM (SELECT rideId, rowtime, toCellId(lon, lat) AS pickUpCell
FROM TaxiRides
WHERE isStart) s
JOIN
(SELECT rideId, rowtime
FROM TaxiRides
WHERE NOT isStart) e
ON s.rideld = e.rideId AND
e.rowtime BETWEEN s.rowtime AND s.rowtime + INTERVAL '1' HOUR
GROUP BY pickUpCell

22 | © 2018 data Artisans

BUILDING A DASHBOARD

SELECT cell,
isStart,

HOP_END(rowtime, INTERVAL '5' MINUTE, INTERVAL '15' MINUTE) AS hopEnd,
COUNT(*) AS cnt
FROM (SELECT rowtime, isStart, toCellId(lon, lat) AS cell
FROM TaxiRides)
GROUP BY cell,
isStart, S
HOP(rowtime, INTERVAL '5' MINUTE, INTERVAL '15' MINUTE) B

Elastic
Search

mmmmm

;;;;;

\ 4

.
38gg388s8

Kafka

=]
J H
o J
(e 4
=a
e |
= ||||! LA H
23 | © 2018 data Artisans Il"l Il"

eeeceescccsce
SEBEB8388g3g8z58838

0o
88888

ese
g

44444

SOUNDS GREAT! HOW CAN | USE IT?

« SQL queries must be embedded in Java/Scala code ®
—Tight integration with DataStream and DataSet APIs

* Until Flink 1.4.0, the community focused on SQL support
— Operators, types, built-in functions, extensibility (UDFs, extern. catalog)
— Proven at scale by Alibaba, Huawei, and Uber
— All built their own submission system & connectors library

« Community neglected user interfaces
—No query submission client, no CLI
—No integration with common catalog services
— Limited set of TableSources and TableSinks

NEW IN FLINK 1.5.0 - SQL CLI (BETA)

Demo Timel

That's a nice toy, but ...
... can | use it for anything serious?

FLIP-24 - A SQL QUERY SERVICE

* REST service to submit & manage SQL queries

— SELECT ..
— INSERT INTO SELECT ..
— CREATE MATERIALIZE VIEW ..

* Serve results of “SELECT ..."” queries
* Provide a table catalog (integrated with external catalogs)

* Use cases
— Data exploration with notebooks like Apache Zeppelin
— Access to real-time data from applications
— Easy data routing / ETL from management consoles

CHALLENGE: SERVE DYNAMIC TABLES

Unbounded input yields unbounded results

(Serving bounded results is easy)

SELECT user, url
FROM clicks
WHERE url LIKE '7%xyz.com'’

Append-only Table

Result rows are never changed
Consume, buffer, or drop rows

SELECT user, COUNT(url) AS cnt
FROM clicks
GROUP BY user

Continuously updating Table

* Result rows can be updated or
deleted

« Consume changelog or
periodically query result table

* Result table must be maintained
somewhere L

FLIP-24 - A SQL QUERY SERVICE

Database /

Application

External Catalog
(Schema Registry,

SELECT HCatalog, ...)

user,
COUNT(url) AS cnt
FROM clicks

GROUP BY user Catalog
Submit Query -
Optimizer
Results Result Server

Query Service

Results are served by Query Service via REST

Application does not need a special client
Works well in many network configurations

Query service can become bottleneck

+
+

28

© 2018 data Artisans

HDFS

Submit Query Job

n
>

Database /

HDFS

a

FLIP-24 - A SQL QUERY SERVICE

Database /

29

Application

Serving
Library

© 2018 data Artisans

External Catalog

(Schema Registry,

SELECT HCatalog, ...)
user,

COUNT(url) AS cnt
FROM clicks

GROUP BY user Catalog
Submit Query -
> Optimizer
Result Handle Result Server

Query Service

HDFS

Submit Query Job

»
>

=

Database /

HDFS

WE WANT YOUR FEEDBACK!

* The design of SQL Query Service is not final yet.

* Check out FLIP-24 and FLINK-75%94

* Share your ideas and feedback and discuss on
JIRA or dev@flink.apache.org.

SUMMARY

* Unification of stream and batch is important. é

* Flink's SQL solves many streaming and batch use cases.
* Runs in production at Alibaba, Uber, and others.

* The community is working on improving user interfaces.
* Get involved, discuss, and contribute!

31 © 2018 data Artisans

The Apache Flink® Conference
Stream Processing | Event Driven | Real Time

F RWARD 3 SEPTEMBER 2018: TRAINING
4-5 SEPTEMBER 2018: CONFERENCE

organized by Artisans BERLIN, GERMANY

Register at berlin.flink-forward.org

Early bird prices available until June 22

@dataArtisans #flinkforward

32 © 2018 data Artisans

OREILLY"

THANK YOU!

Stream
Processing with
Apache Flink

FUNDAMENTALS, IMPLEMENTATION, AND OPERATION
OF STREAMING APPLICATIONS

Fabian Hueske & Vasiliki Kalavri

Available on O’'Reilly Early Release!

dataArtisans

THANK YOU!

@thueske
@dataArtisans WE ARE HIRING
@ApacheFlink data-artisans.com/careers

dataArtisans

