
Apache Lucene 5
New Features and Improvements
for Apache Solr and Elasticsearch

Uwe Schindler
Apache Software Foundation | SD DataSolutions GmbH | PANGAEA

 @thetaph1 ∙ uschindler@apache.org

My Background
• Committer and PMC member of Apache Lucene and Solr - main

focus is on development of Lucene Core.
• Implemented fast numerical search and maintaining the new

attribute-based text analysis API. Well known as Generics and
Sophisticated Backwards Compatibility Policeman.

• Elasticsearch lover.
• Working as consultant and software architect at SD DataSolutions

GmbH in Bremen, Germany.
• Maintaining PANGAEA (Publishing Network for Geoscientific &

Environmental Data) where I implemented the portal's geo-spatial
retrieval functions with Apache Lucene Core and Elasticsearch.

ON THE WAY TO

History

5…

History: Lucene up to version 3.6

History: Lucene up to version 3.6

Lucene started > 10 years ago

History: Lucene up to version 3.6

Lucene started > 10 years ago

Lucene’s VINT format is old and not as friendly
as new compression algorithms to CPU’s

optimizers (exists since Lucene 1.0)

History: Lucene up to version 3.6

History: Lucene up to version 3.6

It was hard to add additional statistics for
scoring to the index

History: Lucene up to version 3.6

It was hard to add additional statistics for
scoring to the index

IR researchers didn’t use Apache Lucene to try
out new algorithms

Small changes to index format
were often huge patches
covering tons of files…

History: Apache Lucene 4

• Major release in October 2012

History: Apache Lucene 4

• Major release in October 2012

• New index engine:
– Codec support (pluggable via SPI)

– DocValues fields

History: Apache Lucene 4

• Major release in October 2012

• New index engine:
– Codec support (pluggable via SPI)

– DocValues fields

• New relevancy models: not only TF/IDF!
– e.g., BM25

History: Apache Lucene 4

• Major release in October 2012

• New index engine:
– Codec support (pluggable via SPI)

– DocValues fields

• New relevancy models: not only TF/IDF!
– e.g., BM25

• FSAs / FSTs everywhere

History: Apache Lucene 4

Complete overhaul of all APIs

• Terms got byte[]
• Low level terms enumerations and postings enumerations

refactored
• Query API internals (scorer, weight)
• Analyzers: new module, package structure changed

(pluggable via SPI)
• IndexReader => AtomicReader, CompositeReader

History: Apache Lucene 4

Complete overhaul of all APIs

• Terms got byte[]
• Low level terms enumerations and postings enumerations

refactored
• Query API internals (scorer, weight)
• Analyzers: new module, package structure changed

(pluggable via SPI)
• IndexReader => AtomicReader, CompositeReader

History: Apache Lucene 4

• Every Lucene 4 release got new features!

– API glitches!!!

History: Apache Lucene 4

• Burden of maintaining the
old stuff:
– old index formats

– especially support for
Lucene 3.x indexes

• Every Lucene 4 release got new features!

– API glitches!!!

On-going Disasters

• Not only problems with bugs in Java runtimes

On-going Disasters

• Not only problems with bugs in Java runtimes
– Story could fill another talk!

On-going Disasters

• Not only problems with bugs in Java runtimes
– Story could fill another talk!

• Major problems with old index formats:
– Lucene 3 had a completely different index format

– without codec support (missing headers,…)

On-going Disasters

• Not only problems with bugs in Java runtimes
– Story could fill another talk!

• Major problems with old index formats:
– Lucene 3 had a completely different index format

– without codec support (missing headers,…)

Lot‘s of hacks!

Chronology
• Lucene 4.2.0: Lucene deletes entire index if

exception is thrown due do too many open files
with OpenMode.CREATE_OR_APPEND (LUCENE-
4870)

• Lucene 4.9.0: Closing NRT reader after upgrading
from 3.x index can cause index corruption (LUCENE-
5907)

• Lucene 4.10.0: Index version numbers caused
CorruptIndexException (LUCENE-5934)

5

5
A lot new features!

5
A lot new features!

• But not so many as you would expect for major

release!

5
A lot new features!

• But not so many as you would expect for major

release!
• Some more than in previous minor 4.x releases…

Lucene 5: "Anti-Feature"

Removal of Lucene 3 index
support!

Lucene 5: "Anti-Feature"

Removal of Lucene 3 index
support!

• Get rid of old index segments:
IndexUpgrader in latest Lucene 4
release helps!

• Elasticsearch has automatic index
upgrader already implemented / Solr
users have to manually do this

Lucene 5: New data safety features

Checksums in all index files

– Checksums are validated on each merge!

– Can easily be validated during Solr‘s /
Elasticsearch‘s replication!

B
a

ckg
ro

u
n

d
 im

a
g

e: M
aksim

 K
ab

ako
u

, Sh
u

ttersto
ck

Lucene 5: New data safety features

Unique per segment ID

– ensures that the reader really sees the
segment mentioned in the commit

– prevents bugs caused by failures in replication
(e.g., duplicate segment file names)

Java 7 support

• Introduced in Lucene 4.8
– Could have been "Lucene 5" already

• Why?
– EOL of Java 6, but still bugs that affected Lucene

– Java 8 released

– use of new features for index safety!

Java 7 Support

Java 7 Support

Try-With-Resources
– Nice, but we had it already implemented:
IOUtils#closeWhileHandlingExceptions

Java 7 Support

Try-With-Resources
– Nice, but we had it already implemented:
IOUtils#closeWhileHandlingExceptions

Some syntactic sugar

Java 7 Support

Try-With-Resources
– Nice, but we had it already implemented:
IOUtils#closeWhileHandlingExceptions

Some syntactic sugar
MethodHandle / ClassValue for Tokenization
API‘s internals

– Huge speedup for dynamic instantiation of token
Attributes, especially in Java 8!

Java 7u55+ has
no serious bugs anymore

(still a no-go for G1GC with Lucene*)

Java 7u55+ has
no serious bugs anymore

(still a no-go for G1GC with Lucene*)

*) we‘re investigating Java 8u40+ !!!

Lucene 5: New index safety features

Cutover to NIO.2

(Java 7, JSR 203)

Lucene 5: Java 7 NIO.2

• Complete overhaul of Lucene I/O APIs

Lucene 5: Java 7 NIO.2

• Complete overhaul of Lucene I/O APIs

• java.io.File* => forbidden-apis *)

*) https://github.com/policeman-tools/forbidden-apis

Lucene 5: Java 7 NIO.2

• Complete overhaul of Lucene I/O APIs

• java.io.File* => forbidden-apis *)

• Atomic rename to publish commit
– no more segments.gen

– fsync() on directory metadata

*) https://github.com/policeman-tools/forbidden-apis

No more index corruption because of
broken Exception handling:

• Exceptions now have a clear meaning, you can rely

on
• NIO.2 APIs now throw useful exceptions
• before that, File.rename() / delete() could

do nothing at all!

Lucene 5: Java 7 NIO.2

Java 7 NIO.2 - Consequences

Java 7 NIO.2 - Consequences

• Use Java 7 APIs to open indexes:
Paths.get()

Java 7 NIO.2 - Consequences

• Use Java 7 APIs to open indexes:
Paths.get()

• All file I/O is now channel based (or mmap)

– if interrupted throws
ClosedByInterruptException

– also SimpleFSDirectory !

Java 7 NIO.2 - Consequences

Java 7 NIO.2 - Consequences

• Never use Future.cancel(true) !!!

– Never interrupt searching threads, it kills your
IndexReader!

– Alternative:
org.apache.lucene.store.RAFDirectory
(RAF = RandomAccessFile, only available in “misc” module)

Lucene 5: Overhaul of Codec API

• Pull APIs throughout Codec components

– E.g., PostingsFormat

• Norms are now handled by separate codec
component

Lucene 5: Index merging

Lucene 5: Index merging

• Linux: Detection if index is on SSD
– Better default merging settings
– Other operating systems assume spinning disks (no

change)

Lucene 5: Index merging

• Linux: Detection if index is on SSD
– Better default merging settings
– Other operating systems assume spinning disks (no

change)

• Merge Scheduler: Auto Throttling
– Automatically controls I/O rates based on

indexing/merging rate
– Stalling under high load is more unlikely!

Lucene 5: Reduced Heap Usage
• Query Filters uses new bit set types
• CachingWrapperFilter replacement:

– New, highly configureable filter cache
– Tracks filter‘s frequency of use
– Simplifies code in Apache Solr and Elasticsearch

• Merging uses much less heap

Lucene 5: Reduced Heap Usage
• Query Filters uses new bit set types
• CachingWrapperFilter replacement:

– New, highly configureable filter cache
– Tracks filter‘s frequency of use
– Simplifies code in Apache Solr and Elasticsearch

• Merging uses much less heap

• Most classes now implement Accountable
– Allows to query heap usage
– Nice "tree view" on heap usage of index components

Lucene 5: Reduced Heap Usage
• Query Filters uses new bit set types
• CachingWrapperFilter replacement:

– New, highly configureable filter cache
– Tracks filter‘s frequency of use
– Simplifies code in Apache Solr and Elasticsearch

• Merging uses much less heap

• Most classes now implement Accountable
– Allows to query heap usage
– Nice "tree view" on heap usage of index components

_cz(5.0.0):C8330469: 28MB

 postings [...]: 5.2MB

 ...

 field 'latitude' [...]: 678.5KB

 term index [FST(nodes=6679, ...)]: 678.3KB

Lucene 5: CustomAnalyzer

• Freely configurable Analyzer
• Based on SPI framework for Tokenizers,

TokenFilters and CharFilters
• Similar to Apache Solr‘s schema.xml:

– Generic names of components (like Elasticsearch)
– Same config options like Apache Solr

• Builder API

Lucene 5: CustomAnalyzer

• Freely configurable Analyzer
• Based on SPI framework for Tokenizers,

TokenFilters and CharFilters
• Similar to Apache Solr‘s schema.xml:

– Generic names of components (like Elasticsearch)
– Same config options like Apache Solr

• Builder API

Analyzer ana =

CustomAnalyzer.builder(Paths.get("/path/to/config"))

 .withTokenizer("standard")

 .addTokenFilter("standard")

 .addTokenFilter("lowercase")

 .addTokenFilter("stop",

 "ignoreCase", "false",

 "words", "stopwords.txt",

 "format", "wordset")

 .build();

Die, FieldCache,… die, die, die!
• FieldCache is gone from Lucene Core

Die, FieldCache,… die, die, die!
• FieldCache is gone from Lucene Core

Im
a

g
e cred

its: Sim
o

n
 W

illn
au

er / Trifo
rk

Die, FieldCache,… die, die, die!
• FieldCache is gone from Lucene Core
• Use DocValues fields and APIs!

Die, FieldCache,… die, die, die!
• FieldCache is gone from Lucene Core
• Use DocValues fields and APIs!

• Not completely gone:

– UninvertingReader in misc/ module emulates
DocValues by uninverting index

– UninvertingReader allows to merge to a new index,
automatically adding DocValues!

ON THE WAY TO LUCENE 6…
Future

Lucene 5.1: Filter => Query

Lucene 5.1: Filter => Query

• (planned) Removal of Filters
– new Occur.FILTER in BooleanQuery
– Removed some duplicate classes already:
BooleanFilter, Term(s)Filter,
NumericRangeFilter…

Lucene 5.1: Filter => Query

• (planned) Removal of Filters
– new Occur.FILTER in BooleanQuery
– Removed some duplicate classes already:
BooleanFilter, Term(s)Filter,
NumericRangeFilter…

• Backwards compatibility:
– Filter extends Query
– query API calls getDocIdSet
– returns 0 as score (boost ignored)

Lucene 5.1: Two Phase Iterators

• Split iterators into cheap and expensive part

Lucene 5.1: Two Phase Iterators

• Split iterators into cheap and expensive part

• Used by PhraseQuery:

– Cheap part is the „matching“ of terms
(conjunction)

– Expensive part is loading & checking positions

Lucene 5.1: Two Phase Iterators

• Split iterators into cheap and expensive part

• Used by PhraseQuery:

– Cheap part is the „matching“ of terms
(conjunction)

– Expensive part is loading & checking positions

• Allows to share common code

Lucene 5.2: Span Queries

• Complete rewrite

Lucene 5.2: Span Queries

• Complete rewrite

• Uses Lucene 5.1 "two phase iterators"

• Shares code with BooleanQuery
(conjunction / disjunction)

Lucene 5.2: Auto-Prefix Codec

• Moves NumericRangeQuery logic into
codec

• More flexible „precisionStep“ (completely
automatic based on terms distribution)

Lucene 5.2: Auto-Prefix Codec

• Works also with TermRangeQuery

• Will replace NRQ in Lucene 6…

– Requires reindexing of numeric fields

– no migration (at the moment)

Lucene 5.3+: NIO.2 again

More NIO.2:

• LockFactory was already refactored for 5.0

Lucene 5.3+: NIO.2 again

More NIO.2:

• LockFactory was already refactored for 5.0

• Take #2: bring file locking to next phase!

• Better remote file system support:
– CIFS/Samba safety: Lock.ensureValid()

– NFS ? Maybe – but it‘s still broken for commits…

THANK YOU!
Questions?

SD DataSolutions GmbH
Wätjenstr. 49

28213 Bremen, Germany
+49 421 40889785-0

http://www.sd-datasolutions.de

http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/
http://www.sd-datasolutions.de/

