The world wide 60 billion transaction
per day journey

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




AUD |ENCE SClENCE © 2016 AudienceScience Inc.




AUD |ENCE SClENCE © 2016 AudienceScience Inc.




AUD |ENCE SClENCE © 2016 AudienceScience Inc.




AUD |ENCE SClENCE © 2016 AudienceScience Inc.




We

« Ranbir Chawla
— V.P Engingeering
— Ranbir.Chawla@audiencescience.com

 Frank Conrad

— Chief Architect
— Frank.Conrad@audiencescience.com

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




Background

« AudienceScience provides fully integrated, end to end,
advertising solutions for the world’s largest brand advertisers.

« AudienceScience receives, processes and responds (in real-
time) to over 80 billion incoming requests a day, in over 42
countries.

* QOur solutions allow advertisers to effectively manage and
leverage their consumer data to produce industry leading ROI
on their advertising spend.

 Global Distribution of Five Points of Presence to Central DC

« \Where we were
— 20 Billion TPD in 2014

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




The Challenges of Scale

« Scaling is in the details

« \We often miss the obvious steps in looking @ the
complex problem

» Clever design does not solve for bad execution

«««««««««««««««««««««««

AUD | EN CE SClEN CE © 2016 AudienceScience Inc.




Chose the right data model

« What scale you need — allow for parallelism
« Store the data that you effective can use it
 How it can handle out layers

 How add later changes, it is extensible
 How is data expired / deleted

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




Chose production oriented architecture

« To allow scale
— With parallel (as massive as make sense)
— Dynamic parallelisms
— Asynchronous processing
— Look to latency and throughput
— Eventual consistency is possible

* Production oriented
— Dynamic limiting
— Allow catch up
— How to handle unreliable network
— Uneven / unreliable hardware

— Think about out layers (latency, data size, cpu consumption), think
was to do with them

— Monitor, monitor, monitor

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




Monitoring — How are you scaling today?

« Chose a monitoring tool set that you can easily script
and version control
— We leverage nagios in our environment
— All setup and configuration happens in an automated fashion
— Bad hardware in large distributed clusters can kill an entire
workflow

* Functional Monitoring
— End to End monitoring — injecting known data for known result
— each component in the pipeline plays a part here
— Monitor all of your instances — sampling does not work here

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




Hadoop at the core

« Our main computational engine is still Hadoop
« Started with 60 Nodes, now running > 500 Nodes

» Leverage best practices to scale Map Reduce
— As much compute as possible in the mapping phase
— Minimize shuffle data, leverage locality

— Output files must be in optimal format, sizes etc for the
consumers next in the workflow

— Put not all nodes in one cluster, have 2 or even more
» But let them easy to move between
» No single point of failure, simpler update

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




Hadoop Tuning

Optimize your job in balance between:

— Mapper/Reducer runtime (good is 5min)

— Number of mapper / reducers, have shuffle time under control
— Amount shuffle data

— Amount and size of output files

* Focus on not creating extra garbage monitoring the GC
is difficult

* Make sure that JVM setting is always in UTF-8

* Enable speculative task execution (but not for S3 writes)

* tmp space distribute across all drives

« Create filesystem instance for each data bucket

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




Leveraging Storm

* Only use grouping if you really need it
 If processing time for certain inputs have a large

distribution Storm will have issues. Work to get
consistency

* minimize cross JVM/Node traffic == minimize shuffling
again!

« As always not create extra garbage, keep the GC happy

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




Voldemort as a large scale key store

« Memory only based stores scale to large sizes
— Very Stable
— scales well and is performant
— But no monitoring what is inside memory

* read only stores
— Efficient to produce with MR on scale
— scales well and is performant
— Very stable

« Use newest Voldemort client 1.10, handle failure / edge
cases better

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




Voldemort Continued

e Challenge is deploying huge RO stores from MR to
Voldemort cluster
— Huge impact to page cache and disk IO on download new one

— Internal solution

« work with FS and HDFS only

* not good to control

 Failure handling, recovery is difficult
— We use our own solution

» Leverage cloud

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




Kafka to feed data from around the world

e Clusters
— POD 5 x 6 broker
— DC 16 broker

« Hardware

— Large disk capacity per broker migrating to smaller capacity more
brokers

* Production
— Stable (use 0.8.1.1, plan to migrate to 0.9)
— scales well and is performant
— Mostly hardware and human related issues
— Older version have high load to zookeeper

* Learning

— 17 TB of data is to much per server, in terms of failure recovery

— Mirror Maker scale need a lot of tuning
« Compression cost huge CPU
» Alot of instances/parallel connection to get throughput with latency

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




Scaling Cassandra

« Cross Data Center replication needs solid networking
and very focused deployment

— Repairs become a challenge
« Optimize your data model to avoid deletes
« Leverage native C* TTL as much as possible

« C* works will for ‘time-series’ oriented data, leverage
time aspects of your data model — TTL again

* |n the end avoid un-necessary clean up jobs

« Key/Value mapping if the value is of similar size to the
key C* is inefficient and needs specific tuning.

e On SSD, make sure TRIM works

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




Scaling Clusters and Micro-Services

 We use Mesos/Marathon on Bare Metal and in AWS
* Deploy with gradual scale vs. single massive deployment
* Local docker registry

— Need good network, 10, to deploy fast

* Cleanup
— Unused images

— Old instance data
— Runtime log files

* Minimize Docker images, but keep them debugable (can
install tools on demand)

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




Moving to the Cloud

* Focused on handling variable, ‘elastic’ data

« Challenges when moving off of fixed hardware onto
someone else’s network

* QObject Store vs. HDFS
— If using Object Stores use them only @ the start and end
— Hash S3 Object Store data for efficient writing
— HDFS for temporary storage
— Consider HDFS full time and add ‘compute only nodes’ to scale
up
» Leveraging Qubole for scalable Hadoop/Spark

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




Scaling Time Series oriented data

« Leveraged C* and wide tables

« Custom Carbon Ingestion Module

« Uses Spark to query C* and perform time series math
« Custom Java Micro Service to ‘mock’ Graphite API

* Next Steps

AUD | ENCE SCIENCE © 2016 AudienceScience Inc.




