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The world wide 60 billion transaction 
per day journey 
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We   

•  Ranbir Chawla 
–  V.P Engingeering 
–  Ranbir.Chawla@audiencescience.com 

•  Frank Conrad 
–  Chief Architect 
–  Frank.Conrad@audiencescience.com 
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Background 

•  AudienceScience provides fully integrated, end to end, 
advertising solutions for the world’s largest brand advertisers.   

•  AudienceScience receives, processes and responds (in real-
time) to over 80 billion incoming requests a day, in over 42 
countries.   

•  Our solutions allow advertisers to effectively manage and 
leverage their consumer data to produce industry leading ROI 
on their advertising spend. 

•  Global Distribution of Five Points of Presence to Central DC 
•  Where we were  

–  20 Billion TPD in 2014 
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The Challenges of Scale   

•  Scaling is in the details 
•  We often miss the obvious steps in looking @ the 

complex problem 
•  Clever design does not solve for bad execution  
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Chose the right data model 

•  What scale you need – allow for parallelism 
•  Store the data that you effective can use it  
•  How it can handle out layers 
•  How add later changes, it is extensible  
•  How is data expired / deleted 
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Chose production oriented architecture 

•  To allow scale 
–  With parallel (as massive as make sense) 
–  Dynamic parallelisms  
–  Asynchronous processing 
–  Look to latency and throughput  
–  Eventual consistency is possible 

•  Production oriented 
–  Dynamic limiting 
–  Allow catch up  
–  How to handle unreliable network 
–  Uneven / unreliable hardware 
–  Think about out layers (latency, data size, cpu consumption), think 

was to do with them 
–  Monitor, monitor, monitor 
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Monitoring – How are you scaling today? 

•  Chose a monitoring tool set that you can easily script 
and version control 
–  We leverage nagios in our environment 
–  All setup and configuration happens in an automated fashion 
–  Bad hardware in large distributed clusters can kill an entire 

workflow 

•  Functional Monitoring  
–  End to End monitoring – injecting known data for known result 
–  each component in the pipeline plays a part here 
–  Monitor all of your instances – sampling does not work here 
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Hadoop at the core 

•  Our main computational engine is still Hadoop 
•  Started with 60 Nodes, now running > 500 Nodes 
•  Leverage best practices to scale Map Reduce 

–  As much compute as possible in the mapping phase 
–  Minimize shuffle data, leverage locality 
–  Output files must be in optimal format, sizes etc for the 

consumers next in the workflow 
–  Put not all nodes in one cluster, have 2 or even more 

•  But let them easy to move between 
•  No single point of failure, simpler update  
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Hadoop Tuning 

•  Optimize your job in balance between: 
–  Mapper/Reducer runtime (good is 5min) 
–  Number of mapper / reducers, have shuffle time under control 
–  Amount shuffle data 
–  Amount and size of output files 

•  Focus on not creating extra garbage monitoring the GC 
is difficult 

•  Make sure that JVM setting is always in UTF-8 
•  Enable speculative task execution (but not for S3 writes) 
•  tmp space distribute across all drives 
•  Create filesystem instance for each data bucket 
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Leveraging Storm 

•  Only use grouping if you really need it 
•  If processing time for certain inputs have a large 

distribution Storm will have issues. Work to get 
consistency 

•  minimize cross JVM/Node traffic == minimize shuffling 
again! 

•  As always not create extra garbage, keep the GC happy 
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Voldemort as a large scale key store 

•  Memory only based stores scale to large sizes 
–  Very Stable 
–  scales well and is performant 
–  But no monitoring what is inside memory 

•  read only stores 
–  Efficient to produce with MR on scale 
–  scales well and is performant 
–  Very stable  

•  Use newest Voldemort client 1.10, handle failure / edge 
cases better 
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Voldemort Continued 

•  Challenge is deploying huge RO stores from MR to 
Voldemort cluster  
–  Huge impact to page cache and disk IO on download new one 
–  Internal solution  

•  work with FS and HDFS only  
•  not good to control 
•  Failure handling, recovery is difficult 

–  We use our own solution 
•  Leverage cloud 
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Kafka to feed data from around the world 
•  Clusters 

–  POD 5 x 6 broker  
–  DC 16 broker 

•  Hardware 
–  Large disk capacity per broker migrating to smaller capacity more 

brokers 
•  Production 

–  Stable (use 0.8.1.1, plan to migrate to 0.9) 
–  scales well and is performant 
–  Mostly hardware and human related issues 
–  Older version have high load to zookeeper 

•  Learning 
–  17 TB of data is to much per server, in terms of failure recovery 
–  Mirror Maker scale need a lot of tuning 

•  Compression cost huge CPU 
•  A lot of instances/parallel connection to get throughput with latency 
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Scaling Cassandra 

•  Cross Data Center replication needs solid networking 
and very focused deployment 
–  Repairs become a challenge  

•  Optimize your data model to avoid deletes 
•  Leverage native C* TTL as much as possible 
•  C* works will for ‘time-series’ oriented data, leverage 

time aspects of your data model – TTL again 
•  In the end avoid un-necessary clean up jobs 
•  Key/Value mapping if the value is of similar size to the 

key C* is inefficient and needs specific tuning. 
•  On SSD, make sure TRIM works 
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Scaling Clusters and Micro-Services 

•  We use Mesos/Marathon on Bare Metal and in AWS 
•  Deploy with gradual scale vs. single massive deployment 
•  Local docker registry 

–  Need good network, IO, to deploy fast 

•  Cleanup 
–  Unused images 
–  Old instance data 
–  Runtime log files 

•  Minimize Docker images, but keep them debugable (can 
install tools on demand) 
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Moving to the Cloud 

•  Focused on handling variable, ‘elastic’ data 
•  Challenges when moving off of fixed hardware onto 

someone else’s network 
•  Object Store vs. HDFS  

–  If using Object Stores use them only @ the start and end 
–  Hash S3 Object Store data for efficient writing 
–  HDFS for temporary storage 
–  Consider HDFS full time and add ‘compute only nodes’ to scale 

up 

•  Leveraging Qubole for scalable Hadoop/Spark 
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Scaling Time Series oriented data 

•  Leveraged C* and wide tables 
•  Custom Carbon Ingestion Module 
•  Uses Spark to query C* and perform time series math 
•  Custom Java Micro Service to ‘mock’ Graphite API  
•  Next Steps 


