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Who We Are

 MapR echnologies
— We make a kick-ass platform for big data computing
— Support many workloads including Hadoop / Spark / HPC / Other
— Extended to allow streams and tables in basic platform
— Free for academic research / training

» Apache Software Foundation

— Culture hub for building open source communities

— Shared values around openness for contribution as well as use
— Many major projects are part of Apache

— Even more minor ones!



Basic Outline

* Why we should measure distributions
* Basic Ideas

* How t-digest works

Recent results

Applications



Why Is This Practically Important

* The novice came to the master and says “something is broken”
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Why Is This Practically Important

* The novice came to the master and says “something is broken”

* The master replied “What has changed?”

* And the student was enlightened



Finding change 1s key

but what kind?




Last Night’s Latencies

208.302

: : 198.571

* These are ping latencies from my hotel 185 999
191.258

. iqht? 201.392
Looks pretty good, right” 11 7ag
197.389

» But what about longer term? 187.749
201.693

> mean(y$t[i]) 186.762

[1] 198.6047 185.296

> sd(y$t[i]) 186.390

[1] 71.43965 183.960
188.060

190.763
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Not So Fast ...

-

-

S

S —

At(ms) ®

-

O —

©

-

O —

S

S | A
| | | | |
0 200 400 600 800

sample



This 1s long-tatitled land




This 1s long-tatitled land

You have to know the
distribution of values
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A single number
1s simply not enough




What We Really Need Here

* | want to be able to compute the distribution from any time
period

* From any subset of measurements
With lots of keys and filters
* And not a lot of space

Basically, any OLAP kind of query
select distribution(x) from .. where .. group by vy,z



Idea 0 — Pre-defined bins

« So let’'s assume we have bins
— Upper, lower bound, constant width

« Get a measurement, pick a bin, increment count

* Works great if you know the data
— And you have limited dynamic range (too many bins)
— And the distribution is fixed

» Useful, but not general enough



Idea 1 — Exponential Bins

« Suppose we want relative accuracy in measurement space

» Latencies are positive and only matter within a few percent

— 1.1 ms versus 1.0 ms
— 1100 ms versus 1000 ms

* We can cheat by using floating point representations
— Compute bin using magic
— Count



FloatHistogram

- Assume all measurements are in the range |Zyuin, Tnax]
 Divide this range into power of 2 sub-ranges
+ Sub-divide each sub-range evenly with 2% steps

— k = 3 is typical
* Relative error is bounded in measurement space



FloatHistogram

- Assume all measurements are in the range |Zyuin, Tnax]

Divide this range into power of 2 sub-ranges

+ Sub-divide each sub-range evenly with 2% steps
— k = 3 is typical
Relative error is bounded in measurement space

* Bin index can be computed using FP representation!



Fixed Size Bins
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Approximate Exponential Bins
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Non-Llinear bins are
better (sometimes)

Still not general enough




Idea 2 — Fully Adaptive Bins

 First intuition — in general, we want accuracy in terms of
percentile

« Second intuition — we want better accuracy at extreme
quantiles
— 50%-ile versus 50.1%-ile?
— What does 0.1% error even mean for 99.99% percentile

* We need bins with small counts near the edges
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19

First 1% of data shown.
Left graph has 100 x 100 sample bins.
Right graph has ~130bins, variable size



The Basic t-digest

» Take a bunch of data
« Sort it
* Group into bins
— But make the bins be smaller at the beginning and end

« Remember the centroid and count of each bin

* That's a t-digest



But Wait, You Need a Bit More

» Take a bunch of new data, old t-digest
Sort the data and the old bins together

Group into bins
— Note that existing bins have bigger weights
— So they might survive ... or might clump

Remember the centroid and count of each new bin

« That's an updated t-digest



Oh ... and Merging

« Take a bunch of old t-digests
Sort the bins

Group into mega-bins

— Respect the size constraint

Remember the centroid and count of each new bin

That's a merged f-digest



Adaptive non-1linear bins
are good and general

And can be grouped
and regrouped




Results
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Uniform F(0.1, 0.1)
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Status

* Current release
— Small accuracy bugs in corner cases
— Best overall is still AVLTreeDigest



Status

* Current release (3.x)
— Small accuracy bugs in corner cases
— Best overall is still AVLTreeDigest

* Upcoming release (4.0)
— Better accuracy in pathological cases
— Strictly bounded size

— No dynamic allocation (with MergingDigest)

— Good speed (100ns for MergingDigest, 5ns for FloatHistogram)
— Real Soon Now



Example Application
* The data:

— ~ 1 million machines
— Even more services
— Each producing thousands of measurements per second

« Store t-digest for each 5 minute period for each measurement

« Want to query any combination of keys, produce t-digest result
“what was the distribution of launch times yesterday?”
“what about last month?”

“in Europe versus in North America versus in Asia?”



Collect Data
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And Transport to Global Analytics

Web-
server

web server

—
(@)
(o]

Web-
server

web server

—
(@)
«Q

data center

log-stash

\_/

log-stash

MAPR

}O log_events )\

log consolidator

~

~

MAPR

Aggregate

Elaborate
events
(log-stash)

D

*O log_events )

GHQ

Signal
detection

© 2017 MapR Technologies



With Many Sources
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With Many Sources
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With Many Sources
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What about visualization?
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Good Results
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Bad Results — 1% of measurements are 3x bigger
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Bad Results — 1% of measurements are 3x bigger
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With Better Vertical Scaling
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Uniform Bins
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FloatHistogram Bins
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With FloatHistogram
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Original Ping Latency Data
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Summary

» Single measurements insufficient, need distributions
« Uniform binned histograms not good
» FloatHistogram for some cases

« T-digest for general cases o

* Upcoming release has super- |
fast and accurate versions | IR
* (Good visualization also key |
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Q & A
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T-digest

 Or we can talk about small errors in g ~

Accumulate samples, sort, merge ©-

Merge if k-size < 1

Interpolate using centroids in x U U AU R—
0.0 0.2 0.4 0.6 0.8 1.0

q

Very good near extremes, no dynamic allocation



