
1

Streaming your shared ride
Berlin Buzzwords, June 17th 2019
go.lyft.com/berlin-buzzwords-2019

Thomas Weise | @thweise

http://go.lyft.com/berlin-buzzwords-2019

Agenda

2

1. Streaming Architecture Overview

2. Streaming Analytics

3. Streaming Applications

4. Integrations / Connectors

5. Deployment

3

(Streaming) Data at Lyft

4

Dynamic Pricing
Supply/Demand curve
ETA

Pricing

Notifications
Detect Delays
Coupons

User Delight
Fraud
Behaviour Fingerprinting
Monetary Impact
Imperative to act fast

Top Destinations

Core Experience

5

Data platform users

5

Data Modelers Analysts Data
Scientists

General
Managers

Data Platform

Engineers ExperimentersProduct
Managers

Analytics Biz ops Building apps Experimentation

6

Data platform users

6

Data Modelers Analysts Data
Scientists

General
Managers

Data Platform

Engineers ExperimentersProduct
Managers

Analytics Biz ops Building apps Experimentation

777

Data Platform architecture

Data Discovery
app - Amundsen

Services (e.g.
ETA, Pricing)

Operational Data
stores (e.g.
Dynamo)

Models +
Applications (e.g.

ETA, Pricing)

Apache Superset

BI/Data Viz

Marketplace
Operations app

. . .

Other custom
apps

Custom apps

Flyte

88

Data Platform architecture

Data Discovery
app - Amundsen

Services (e.g.
ETA, Pricing)

Operational Data
stores (e.g.
Dynamo)

Models +
Applications (e.g.

ETA, Pricing)

Apache Superset

BI/Data Viz

Marketplace
Operations app

. . .

Other custom
apps

Custom apps

Flyte

99

PubSub: From Kinesis to Kafka

• Latency
‒ Kinesis exhibits high tail latency, with p99 write latency over 100ms and p999 write latency reaching a few

seconds
‒ Kafka: <20ms p99 write latency and <75ms p999
‒ Difficult to achieve latency SLA and durability

• Fanout limitation
‒ Each Kinesis shard can support at most five read transactions per second, with a maximum total read rate of

2MB per second (per shard)
‒ Even enhanced fanout capability with Kinesis 2.0 API is still limited to 5 consumers by default

• Scalability limitation
‒ Limit on number of shards (by default 500), we are using 1000s
‒ Increase only by factor of 2
‒ Resharding is manual, disruptive and time-consuming
‒ Cost increases with number of shards

10

Streaming Compute Stack

10

Streaming
Application
(SQL, Java,

Python via Beam)

Stream / Schema
Registry

Deployment
Tooling

Metrics &
Dashboards Alerts Logging

Amazon
EC2 Amazon S3 Wavefront Salt

(Config / Orca)
Docker

(Development)

Source Sink

11

Flink Abstraction Levels

12

Use Case Categorization

Analytics Applications

Paradigm Declarative Imperative

Language SQL, Table API Transforms in Java, Python, ...

Schema External (tables) Expressed in programming language

Execution Optimized by system As programmed

State and time Automatic state and triggers Explicit control over state and triggers

Use cases Many (data preparation, feature
generation, …)

Fewer with complex, use case specific
logic

TTV/TCO Lower (self-serve, fully managed, fast
onboarding)

Higher (skill set, longer to implement)

13

Analytics
use case

Dryft
fully managed data processing engine, powering real-time features and events

● Need - Consistent Feature Generation
○ The value of your machine learning results is only as good as the data
○ Subtle changes to how a feature value is generated can significantly impact results

● Solution - Unify feature generation
○ Batch processing for bulk creation of features for training ML models
○ Stream processing for real-time creation of features for scoring ML models

● How - Flink SQL within fully managed service
○ Use Flink as the processing engine using streaming or bulk data
○ Add automation to launch and maintain feature generation programs at scale

https://www.slideshare.net/SeattleApacheFlinkMeetup/streaminglyft-greg-fee-seattle-apache-flink-meetup-104398613/#11

https://www.slideshare.net/SeattleApacheFlinkMeetup/streaminglyft-greg-fee-seattle-apache-flink-meetup-104398613/#11

Dryft Program Specification

15

Configuration file decl_ride_completed.sql

{
 "source": "dryft",
 "query_file": "decl_ride_completed.sql",
 "kinesis": {
 "stream": "declridecompleted" },
 "features": {
 "n_total_rides": {
 "description": "All time ride count per user",
 "type": "int",
 "version": 1 }
 }
}

SELECT COALESCE(user_lyft_id,
passenger_lyft_id, passenger_id, -1) AS user_id,
 COUNT(ride_id) as n_total_rides
 FROM event_ride_completed
 GROUP BY COALESCE(user_lyft_id,
passenger_lyft_id, passenger_id, -1)

Dryft Program Execution

16

● Backfill - read historic data from S3, process, sink to S3

● Real-time - read stream data from Kinesis/Kafka, process, sink to DynamoDB

SinkS3 Source SQL

SinkKinesis/Kafka Source SQL

Bootstrapping

17

● Read historic data from S3

● Transition to reading real-time data

● https://www.ververica.com/flink-forward/resources/bootstrapping-state-in-apache-flink

S3 Source

Kinesis/Kafka Source

Business

Logic
Sink

< Target Time

>= Target Time

https://www.ververica.com/flink-forward/resources/bootstrapping-state-in-apache-flink

Benefits

● Low latency computation on streaming data

● Fast onboarding

● Minimal development time

● Fully managed

● Self Service

● Reliable

19

Applications
use case

Dynamic Pricing

● Dynamic Pricing - price evaluated minutely

per location bucket

● An Imbalanced Market is Inefficient

○ Too many available drivers: bad

○ Too few available drivers: bad

○ Solution: Price lever controls passenger

request rate, which maintains healthy

supply levels

● Result: increase price if demand >> supply

20

What is PrimeTime?

● Belief: There exists some set of

optimal price multipliers per

location/time bucket

● PrimeTime- Lyft product that sets a

multiplier for each gh6 each

minute

● Example: In ‘9q8yyv’, at 5:01pm

PST, PrimeTime = 2.0

● Scale: Millions of geohashes prices

every minute

21

Legacy architecture: A series of cron jobs

● Ingest high volume of client app events
(Kinesis, KCL)

● Compute features (e.g. demand,
conversation rate, supply) from events

● Run ML models on features to compute
primetime for all regions (per min, per gh6)

SFO, calendar_min_1: {gh6: 1.0, gh6: 2.0, ...}

NYC: calendar_min_1: {gh6, 2.0, gh6: 1.0, ...}

22

Problems

1. Latency

2. Code complexity (LOC)

3. Hard to add new features involving windowing/join (i.e. arbitrary demand
windows, subregional computation)

4. No data driven / smart triggers

23

24

Streaming!

24

Streaming
Application
(SQL, Java)

Stream / Schema
Registry

Deployment
Tooling

Metrics &
Dashboards Alerts Logging

Amazon
EC2 Amazon S3 Wavefront Salt

(Config / Orca) Docker

Source Sink

25

Apache Beam

1. End users: who want to write pipelines in a
language that’s familiar.

2. SDK writers: who want to make Beam
concepts available in new languages.
Includes IOs: connectors to data stores.

3. Runner writers: who have a distributed
processing environment and want to
support Beam pipelines

Beam Model: Fn Runners

Apache
Flink

Apache
Spark

Beam Model: Pipeline Construction

Other
LanguagesBeam Java

Beam
Python

Execution Execution

Cloud
Dataflow

Execution

https://s.apache.org/apache-beam-project-overview

https://s.apache.org/apache-beam-project-overview

26

Multi-Language Support

● Started with Java SDK and Java Runners

● 2016: Initiate cross-language support effort

● 2017: Python SDK on Dataflow

● 2018: Go SDK (for portable runners)

● 2018: Python on Flink MVP

● Next: Cross-language pipelines, Samza and other (?) runners

27

Python Example

p = beam.Pipeline(runner=runner, options=pipeline_options)

(p

 | ReadFromText("/path/to/text*") | Map(lambda line: ...)

 | WindowInto(FixedWindows(120)

 trigger=AfterWatermark(

 early=AfterProcessingTime(60),

 late=AfterCount(1))

 accumulation_mode=ACCUMULATING)

 | CombinePerKey(sum))

 | WriteToText("/path/to/outputs")

)

result = p.run()

(What, Where, When, How)

28

Python via Beam on Flink

SDK
(Python)

Job Service

Artifact
Staging

Flink Job

Job Manager

Fn Services

Task Manager

Executor / Fn API

Provision Control Data

Artifact
Retrieval State Logging

gRPC

Pipeline (protobuf)

ClusterRunner

Dependencies
(optional)

python -m
apache_beam.examples.wordcount \
 --input=/etc/profile \
 --output=/tmp/py-wordcount-direct \
 --runner=PortableRunner \
 --job_endpoint=localhost:8099 \
 --streaming

Staging Location
(DFS, S3, …)

SDK Worker
(UDFs)

SDK Worker
(UDFs)

SDK Worker
(Python)

29

Pipeline (conceptual outline)

kinesis events
(source)

aggregate and
windowfilter events

run models to
generate
features

(culminating in
PT)

internal services redis

ride_requested,
app_open, ...

unique_users_per_min,
unique_requests_per_5_
min, ...

conversion learner,
eta learner, ...

Lyft apps
(phones)

valid sessions,
dedupe, ...

Benefits

• Latency: 3 minutes -> 30s

‒ Latency now dominated by model execution

• Reuse of model code

• 10K => 4K LOC

• Fewer AWS instances

30

31

Integrations

Flink Connectors

32

● Kinesis Consumer

○ also as custom Beam source

● Kafka Consumer & Producer

● S3 Read & Write

● Elasticsearch

● DynamoDB Streams (special Kinesis Consumer)

● Checkpointing!

○ S3 for checkpoint storage

Challenges

33

● Production readiness

○ Observability, Configuration, Performance

● AWS integration

○ Transient service errors => retries

○ S3 hot shards with checkpointing => entropy injection

● Event time

○ Source watermarks

○ Watermark skew

● Rate controls

34

Watermark Skew

event time

partition 1

partition 2

partition 3

5:10pm 5:00pm

5:00 - 5:015:01 - 5:025:02 - 5:03

35

Solution: Source synchronization

partition 1

partition 2

consumer

partition 3

partition 4

consumer

global watermark

global watermark

global
watermark

shared
state

with synchronization

skew leading to large
state size

Contribution to Flink

37

● Support for global aggregates: FLINK-10887

○ Released with Flink 1.8.0

● Synchronization in Kinesis Consumer: FLINK-10921

○ Upcoming Flink 1.9.0

● Synchronization in Kafka Consumer: FLINK-12675

● Long term: New Source Interface: FLIP-27

○ Framework developed by Flink community

○ Will include watermark alignment capability

https://issues.apache.org/jira/browse/FLINK-10887
https://issues.apache.org/jira/browse/FLINK-10921
https://issues.apache.org/jira/browse/FLINK-12675
https://cwiki.apache.org/confluence/display/FLINK/FLIP-27%3A+Refactor+Source+Interface

38

Deployment

Flink on Kubernetes

39

● Goal: Improve stability, flexibility, ease of use, and speed of
development

● How? By building a Kubernetes operator that manages Flink
applications

● Check it out: https://github.com/lyft/flinkk8soperator

Flink
Application

YAML Flink
Operator

TM

JM

TM

TM TM

https://www.slideshare.net/FlinkForward/flink-forward-san-francisco-2019-managing-flink-on-kubernetes-flinkk8soperator-anand-swaminathan-ketan-umare

https://github.com/lyft/flinkk8soperator
https://www.slideshare.net/FlinkForward/flink-forward-san-francisco-2019-managing-flink-on-kubernetes-flinkk8soperator-anand-swaminathan-ketan-umare

Flink Operator - CRD

40

● Custom resource represents Flink

application

● Single Flink job

(“Flink cluster” == Flink application)

● Docker image contains all dependencies

● CRD modifications trigger update (includes

parallelism and other Flink configuration

properties)

(Stateful) Upgrade

41

Running

Operator detects
change to CRD

Updating

Creates new Flink cluster,
cancels existing Flink job with

savepoint

Savepointing

Waits for savepoint to
succeed, and updates

savepoint location in CRD

New

Launches new Flink job
and tries to transition to

Running

44

We are hiring! lyft.com/careers
Slides: go.lyft.com/berlin-buzzwords-2019

Q & A

http://go.lyft.com/berlin-buzzwords-2019

