
Building Analytics Applications
with Streaming Expressions

 in Apache Solr
Amrit Sarkar

Cloud Search Reliability Engineer
Lucidworks Inc

@sarkaramrit2
#BerlinBuzzwords19

Based in San Francisco

Offices in Cambridge, Bangalore, Bangkok, New York City, Raleigh, Munich

Over 300 customers across the Fortune 1000

Fusion, a Solr-powered platform for search-driven apps

Consulting and support for organizations using Solr

Agenda

• Parallel Computing Framework
Introduction to

• Streaming API
• Streaming Expressions
• Types of Expressions
• Shuffling
• Workers

• Real-Life Use Cases
• Demo Application
• Performance Analysis
• Statistical Programming

Challenges building applications on real-time data

• Searching and filtering the data
before performing analytics.

• Executing complex operations &
co-relations on unstructured and
non-preprocessed data is time
consuming.

• Dependencies on multiple tools
leading to higher maintenance cost.

Data visualizer

Client Client

Database

Real-time
Updates

• Streaming API

• Streaming Expressions

• Shuffling

• Worker collections

• Parallel SQL

Parallel Computing
Framework

Available in SolrCloud mode

Streaming API

• Java API for parallel computation

• Real-time Mapreduce and Parallel Relational Algebra

• Results are streams of tuples (key/value) (TupleStream)

• org.apache.solr.client.solrj.io.*

ParallelStream pstream =

(ParallelStream) streamFactory.constructStream("parallel(collectionName, ……....)");

pstream.open();

Streaming Expressions

curl --data-urlencode ‘expr=
search(gettingstarted,
zkHost=”localhost:9983",
qt=”/export”,
q=”hatchbacks”,
fq=”year:2014”,
fl=”id, model_name”,
sort=”id asc”))’
http://localhost:8983/solr/
gettingstarted/stream

Use case: perform full index
search and retrieve specific
fields sorted

• String Query Language and Serialisation

format for the Streaming API

• Streaming expressions compile to

TupleStream; TupleStream serialise to

Streaming Expressions

• Can be used directly via HTTP to SolrJ

• Expressions can be executed against Solr

API: /solr/<collection-name>/stream

Streaming Expressions

curl --data-urlencode ‘expr=
search(gettingstarted,
zkHost=”localhost:9983",
qt=”/export”,
q=”hatchbacks”,
fq=”year:2014”,
fl=”id, model_name”,
sort=”id asc”))’
http://localhost:8983/solr/
gettingstarted/stream

Use case: perform full index
search and retrieve specific
fields sorted

Streaming Expressions

• Stream Sources
The origin of a TupleStream

search, facet, jdbc, stats, topic, timeseries, train and more..

• Stream Decorators
Wrap other stream functions and perform operations on the stream, row wise

complement, hashJoin, innerJoin, merge, intersect, top, unique and more..

• Stream evaluators
evaluate (calculate) new values based on other values in a tuple, column wise

add, eq, div, mul, sub, length, asin, acos, abs, if:then and more..

Streaming Expressions - Use cases
Use case: Destinations reachable with single stop from ‘New York’

(graphical traversal)

 nodes(distances,

nodes(distances,
 walk="New York->source_s",
 gather="destination_s"),

 walk="node->source_s",
 gather="destination_s",

trackTraversal="true",
scatter="branches,leaves")

Solr indexes are stored in ‘token’ to ‘document-ids’ format, ‘nodes’ perform BFS on field tokens.

Streaming Expressions - Use cases
Use case: Determine most relevant terms on dynamic data set

significantTerms(
enron-emails,
q="To:Tim Belden",
field="content",
limit="2",
minDocFreq="10",
maxDocFreq=".20",
minTermLength="5"

)

Solr indexes are stored in ‘token’ to ‘document-ids’ format, ‘significantTerms’ aggregates over tokens.

Streaming Expressions - Use cases

Use case: Calculate useful metrics on data fetched from various sources.
• conversion ratio (conversions to clicks)
• CTR (clicks to impressions)
• cost ratio (conversions to currency cost)

campaign_id_s org_id_s conversions_i impressions_i clicks_i

cmp-01 org-01 4 134 48

cmp-02 org-02 2 174 26

cmp-03 org-01 6 152 49

cmp-01 org-01 5 154 27

cmp-02 org-01 9 176 38

cmp-03 org-01 5 137 83

cmp-01 org-01 3 154 36

cmp-02 org-02 1 178 35

cmp-03 org-01 7 124 49

……... ……... ……... ……... ……...

campaign_id_s currency_cost_i

cmp-01 6600

cmp-02 5840

cmp-03 8400

Events captured in solr collection
‘weekly_data’

Campaign costs stored in mysql table
‘cost’

Streaming Expressions - Use cases

facet(weekly_data, q="org_id_s:org-01", buckets="campaign_id_s",
bucketSorts="campaign_id_s asc", bucketSizeLimit=100,
sum(conversations_i), sum(impressions_i), sum(clicks_i)),

Use case: Join cost data with aggregated conversions, clicks and impressions per campaign
for organisation ‘org-01’

select(

 campaign_id_s as campaign_id_s, sum(conversations_i) as aggr_conv,
sum(impressions_i) as aggr_impr, sum(clicks_i) as aggr_clicks),

innerJoin(

jdbc(connection="jdbc:mysql://localhost/cost_db?user=root&password=root",
sql="SELECT campaign_id_s,currency_cost_i FROM cost",
sort="campaign_id_s asc", driver="com.mysql.jdbc.Driver"),

on="campaign_id_s")

Streaming Expressions - Use cases
Use case: Join cost data with aggregated conversions, clicks and impressions per campaign for
organisation ‘org-01’

innerJoin(
select(

facet(weekly_data,
q="org_id_s:org-01",
buckets="campaign_id_s",
bucketSorts="campaign_id_s asc",
bucketSizeLimit=100,
sum(conversations_i),
sum(impressions_i),
sum(clicks_i)),

campaign_id_s as campaign_id_s,
sum(conversations_i) as aggr_conv,sum(impressions_i)
as aggr_impr, sum(clicks_i) as aggr_clicks),
jdbc(connection="jdbc:mysql://localhost/cost_db?
user=root&password=root",
sql="SELECT campaign_id_s,currency_cost_i FROM cost",
sort="campaign_id_s asc",
driver="com.mysql.jdbc.Driver"),

on="campaign_id_s")

Streaming Expressions - Use cases
Use case: Calculate useful metrics on data fetched from various sources for ‘org-01’:

● conversion ratio (conversions to clicks)
● CTR (clicks to impressions)
● cost ratio (conversions to currency cost)

select(
innerJoin(
……..
on="campaign_id_s"),

div(aggr_conv, aggr_clicks)
as conversion_ratio,
div(aggr_clicks , aggr_impr)
as ctr,
div(currency_cost_i, aggr_conv)
as campaign_cost_ratio)

Streaming Expressions - Use Cases

Use case: Calculate useful metrics on data fetched from different sources for organisations and campaigns:
● Ratios

○ conversion ratio (conversions to clicks)
○ CTR (clicks to impressions)
○ cost ratio (conversions to currency cost)

● Time-series ratios
● Rankings: multi-faceted

Apache Zeppelin Notebook

Plot analytics dashboards on Apache Zeppelin
using Solr Interpreter
(Kiran Chitturi, Lucidworks Inc)

https://github.com/lucidworks/zeppelin-solr

Streaming Expressions - Demo Application

Streaming Expressions - Use cases
Use case: Create a view from result-set of previously discussed use-case:
calculate metrics (index data to new collection)

update(
report, batchSize=500,
 select(……..
campaign_id_s as campaign)
)

complexity - O(N)
N - total rows processed

Streaming Expressions - Shuffle

Client/stream
handler

/stream
handler

/stream
handler

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

Shard 1
Replica 1

Shard 2
Replica 1

Shard 3
Replica 1

Shard 4
Replica 1

Shard 5
Replica 1

Shard 1
Replica 2

Shard 2
Replica 2

Shard 3
Replica 2

Shard 4
Replica 2

Shard 5
Replica 2

Streaming Expressions - Shuffle

Client/stream
handler

/stream
handler

/stream
handler

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5

Shard 1
Replica 1

Shard 2
Replica 1

Shard 3
Replica 1

Shard 4
Replica 1

Shard 5
Replica 1

Shard 1
Replica 2

Shard 2
Replica 2

Shard 3
Replica 2

Shard 4
Replica 2

Shard 5
Replica 2

“Controlled”[subset S1]

Streaming Expressions

Worker
Collections

● Regular SolrCloud collections

● Perform streaming aggregations using the
Streaming API

● Receive shuffled streams from replicas

● May be empty or created just-in-time or
have regular data

● The goal is to separate processing from
data if necessary

Streaming Expressions - Use cases
Use case: Indexing the result-set of discussed use-case (calculate metrics for
organisation) to new collection ‘report’ parallely utilising ‘n’ workers

parallel(worker,
update(report,batchSize=10,
select(
innerJoin(
select(
facet(weekly_data, q="org_id_s:org-01", buckets="campaign_id_s", bucketSorts="campaign_id_s asc", bucketSizeLimit=100,
sum(conversations_i), sum(impressions_i), sum(clicks_i), partitionKeys="campaign_id_s"),
campaign_id_s as campaign_id_s, sum(conversations_i) as aggr_conv, sum(impressions_i) as aggr_impr, sum(clicks_i) as aggr_clicks),
search(cost, zkHost="localhost:9983", qt="/export",q="*:*", fl="campaign_id_s,org_id_s,currency_cost_i",
partitionKeys="campaign_id_s", sort="campaign_id_s asc"),
on="campaign_id_s"),
div(aggr_conv, aggr_clicks) as conversion_ratio, div(aggr_clicks , aggr_impr) as ctr, div(currency_cost_i, aggr_conv)
as campaign_cost_ratio, campaign_id_s as campaign)),

workers=3,
zkHost="localhost:9983",
sort="campaign asc")

Streaming Expressions - Use cases
Use case: Indexing the result-set of discussed use-case (calculate metrics for
organisation) to new collection ‘report’ parallely utilising ‘n’ workers.

complexity - Z(W) + O(N x W)/W ~ O(N)/W
 N - total rows processed Z - aggregation W - number of workers utilised N >>W

Statistical Programming

• Solr’s powerful data retrieval capabilities can be combined with in-depth statistical
analysis.
• SQL, anomaly detection, time-series aggregation, Linear regressions and more..

• Syntax can be used to create arrays from the data so it can be manipulated,
transformed and analyzed; can be used to train models and predict from historical data.

• Statistical function library:
• Percentiles, Euclidean Distance, Normal Distribution, Covariances and more.
• backed by Apache Common Maths Library

https://commons.apache.org/proper/commons-math/

Statistical Programming - Use cases

Use case: Determine correlation among stocks from their historical data.
Correlation measures the extent that two variables fluctuate together. For example if rise of stock A typically coincides
with rise in stock B they are positively correlated. If rise in stock A typically coincides with fall in stock B they are
negatively correlated.

Data
Representation:

EventID (unique) StockID Date Closing points

stockA-1 stockA 01-02-2013 30

stockB-1 stockB 01-02-2013 168

stockC-1 stockC 01-02-2013 356

stockB-2 stockB 02-02-2013 237

stockA-2 stockA 02-02-2013 43

……... ……... ……... ……...

Feb 2013 to Jan 2017

Statistical Programming - Use cases

tuple(correlation=corr(pricesA, pricesB)))

set variables and outputs single tuple

limit the resultset to stockA,
assign to variable ‘stockA’

limit the resultset to stockB,
assign to variable ‘stockB’

‘col’ func creates array from a list of
Tuples

corr evaluator which performs the Pearson
product-moment correlation calculation on
two columns of numbers.

Use case: Determine correlation among stocks A to B from their historical data.

stockA=search(historical_stocks_data,
zkHost="localhost:9983", qt="/export",
q="stock_s:stockA", fl="timestamp_dt, closing_pts_i",
sort="timestamp_dt asc"),

stockB=search(historical_stocks_data,
zkHost="localhost:9983", qt="/export",
q="stock_s:stockB", fl="timestamp_dt, closing_pts_i",
sort="timestamp_dt asc"),

let(

pricesA = col(stockA, closing_pts_i),
pricesB = col(stockB, closing_pts_i),

Statistical Programming - Use cases
Use case: Determine correlation among stocks A to B and C from their historical data.

 ‘A’ to ‘B’ ‘A’ to ‘C’

Stock ‘A’ is highly positively correlated to stock
’B’, indicating if there is a future prediction for stock
‘B’ to rise, it is highly likely stocks prices for stock
‘A’ will rise too and similar trend will follow if
falling.

Stock ‘A’ is moderately negatively correlated to
stock ’C’, indicating prediction for stock ‘A’ cannot
be relied upon stock ‘C’ trend.

Statistical Programming - on Zeppelin

Statistical Programming - on Zeppelin

Streaming Expressions & DeepLearning4j

• Eclipse Deeplearning4j is first commercial-grade, open-source, distributed
deep-learning library written for Java and Scala.

• DataSetIterator handles traversing through a dataset and preparing data for a
neural network.

• TupleStreamDataSetIterator is introduced in 1.0.0-beta2 by Christine
Poerschke, Committer PMC Apache Solr.

• Fetches data via Streaming Expressions, sources like Solr Collections, JDBC etc.

https://github.com/deeplearning4j/deeplearning4j/blob/deeplearning4j-1.0.0-beta2/deeplearning4j/deeplearning4j-dataimport-solrj/src/main/java/org/deeplearning4j/nn/dataimport/solr/client/solrj/io/stream/TupleStreamDataSetIterator.java

References & Knowledge Base
• Use cases and examples available on Github: /sarkaramrit2/stream-solr

• Streaming expression official documentation in Apache Solr.

• Statistical Programming official documentation in Apache Solr.

• Joel Bernstein’s blog.

• Zeppelin Visualizer for Streaming Solr.

• Presentation links:

• Applied Mathematical Modeling with Apache Solr

• The Evolution of Streaming Expressions

• Streaming Aggregation, New Horizons for Search

• Analytics and Graph Traversal with Solr

• Creating New Streaming Expressions

https://github.com/sarkaramrit2/stream-solr
https://lucene.apache.org/solr/guide/streaming-expressions.html
https://lucene.apache.org/solr/guide/statistical-programming.html
http://joelsolr.blogspot.in/
https://github.com/apache/lucene-solr/blob/SOLR-13105-visual/solr/solr-ref-guide/src/visualization.adoc
https://www.youtube.com/watch?v=Seawc8qWYLI
https://www.youtube.com/watch?v=kTNe3TaqFvo
https://www.youtube.com/watch?v=n5SYlw0vSFw
https://www.youtube.com/watch?v=AG0eKcRyEeY
https://www.youtube.com/watch?v=YyAgTWGX9nE

Thank you!

Amrit Sarkar
Cloud Search Reliability Engineer
Lucidworks Inc

@sarkaramrit2

#BerlinBuzzwords19

