" Lucidworks

] (]

Bullding Analyfics Applications vy

Willg S’rreomlng Expressions
IN Apache Solr

Amrit Sarkar
Cloud Search Reliability Engineer
Lucidworks Inc

@sarkaramrit2
#BerlinBuzzwords19

Lucidworks

Who are we”?

Based in San Francisco

Offices in Cambridge, Bangalore, Bangkok, New York City, Raleigh, Munich
Over 300 customers across the Fortune 1000

Fusion, a Solr-powered platform for search-driven apps

Consulting and support for organizations using Solr

"% Lucidworks

Agenda

* Parallel Computing Framework .
Infroduction to T

 Stfreaming API

» Sfreaming Expressions
» Types of Expressions

* Shuffling

» Workers

* Real-Life Use Cases
Demo Application

* Performance Analysis

« Staftistical Programming

Challenges building applications on real-time data Lucidworks

[Data visuanzer} * Searching and filtering the data
before performing analytics.

A

* Executing complex operations &

Database

co-relations on unstructured and
non-preprocessed data is time
consuming.

Real-time
Updates

* Dependencies on multiple tools
leading to higher maintenance cost.

* Streaming API

Solr

* Streaming Expressions

Parallel Computing e Shufflin
Framework 5

Available in SolrCloud mode e Worker collections

e Parallel SQL

St reami ng API Lucidworks

* Java API for parallel computation
* Real-time Mapreduce and Parallel Relational Algebra
* Results are streams of tuples (key/value) (TupleStream)
e org.apache.solr.client.solrj.io.*
ParallelStream pstream =

(ParallelStream) streamFactory.constructStream("parallel(collectionName,)");

pstream.open();

Streaming Expressions

* String Query Language and Serialisation

Use case: perform full index
search and retrieve specific
fields sorted

format for the Streaming API

e Streaming expressions compile to

curl --data-urlencode ‘expr= TupleStream; TupleStream serialise to
search(gettingstarted,

zkHost="localhost:9983", Streaming Expressions

qt="/export”,

q="hatchbacks”, * Can be used directly via HTTP to Solr]
fq=""year:2014”,
flI="id, model name”,
sort="id asc”))’
http://localhost:8983/solr/ API: /solr/<collection-name>/stream

gettingstarted/stream

* Expressions can be executed against Solr

Streaming Expressions

@ Stream Decorator @ Stream Source Graph Source @ Datastore
Use case: perform full index ,
. s @ search @ solr (gettingsta
search and retrieve specific
fields sorted
{ {
curl --data-urlencode ‘eXPI"= "result-set": { "model_name": "O",
search(gettingstarted, "docs": ["id": "3
zkHost=""localhost:9983", {
qt=”/export”, "model_name": "M",
q="hatchbacks”, "id": "1" "EOF": true,
fq=”year:20 | 4’,, 1 "RESPONSE_TIME": 12
flI="id, model name”, }
sort="id asc”))’ "model_name": "N",]
“id": "2”
http://localhost:8983/solr/ : }}

gettingstarted/stream

Streaming Expressions Lucidworks

e Stream Sources
The origin of a TupleStream

search, facet, jdbc, stats, topic, timeseries, train and more..

e Stream Decorators
Wrap other stream functions and perform operations on the stream, row wise

complement, hashjoin, innerfoin, merge, intersect, top, unique and more..

e Stream evaluators
evaluate (calculate) new values based on other values in a tuple, column wise

add, eq, div, mul, sub, length, asin, acos, abs, if:then and more..

Streaming Expressions - Use cases Lucidworks

Use case: Destinations reachable with single stop from ‘New York’
(graphical traversal)
® Stream Decorator @ Stream Source Graph Source @ Datastore
nodes(distances, e KRG ARIESSE

@ solr (graph)
nodes(distances,

{ {
walk="New York->source_s", "result-set": { "node": "Bengaluru",
gather="destination_s"), "docs": [field": "destination_s",
{ "level": 2,
"count(*)": 2,
walk="node->source s", "node": "New York", :) _
- .) - . "collection": "distances",
gather="destination_s", collection": "distances", R —
"field": "node" " s om
trackTraversal="true",)) y ek
ancestors”: [], "New Delhi"

| n
scatter="branches,leaves") "level": 0 :

b b

Solr indexes are stored in ‘token’ to ‘document-ids’ format, ‘nodes’ perform BFS on field tokens.

Streaming Expressions - Use cases Lucidworks

Use case: Determine most relevant terms on dynamic data set

@ Stream Decorator @ Stream Source Graph Source @ Datastore

significantTerms(

@ significantTerms
enron-emails,

q="To:Tim Belden", { t

"score": 54.244087
"result-set": { !

fie|d="content", . . "term": "john.g.larrea",
P 1Y 1] docs”: ["foreground": 348,
llmlt_ 2 ’ { "background": 512
minDocFreq="10", "score": 55.028915, i
maxDocFreq=".20", "term": "entity's", "EOF": true,
minTermLength="5" "foreground": 362, "RESPONSE_TIME": 1701
"background": 478 }
) }]
! }

}

Solr indexes are stored in ‘token’ to ‘document-ids’ format, ‘significantTerms’ aggregates over tokens.

Streaming Expressions - Use cases Lucidworls

Use case: Calculate useful metrics on data fetched from various sources.

* conversion ratio (conversions to clicks)
» CTR (clicks to impressions)
* cost ratio (conversions to currency cost)

campaign_id_s| org_id_s conversions_i | impressions_i | clicks_i
cmp-01 org-01 4 134 48
cmp-02 org-02 2 174 26
cmp-03 org-01 6 152 49
campaign_id_s currency_cost_i cmp-01 org-01 5 154 27
cmp-01 6600 cmp-02 org-01 9 176 38
cmp-02 5840 cmp-03 org-01 5 137 83
cmp-03 8400 cmp-01 org-01 3 154 36
Campaign costs stored in mysql table cmp-02 org-02 ! 178 35
‘cost’ cmp-03 org-01 7 124 49

Events captured in solr collection
‘weekly_data’

Streaming Expressions - Use cases Lucidworks

Use case: Join cost data with aggregated conversions, clicks and impressions per campaign
for organisation ‘org-01’

innerjoin(
select(
facet(weekly data, q="org_id_s:org-01", buckets="campaign_id_s",

bucketSorts="campaign_id_s asc", bucketSizeLimit=100,

sum(conversations_i), sum(impressions_i), sum(clicks_i)),
campaign_id_s as campaign_id_s, sum(conversations_i) as aggr_conv,

sum(impressions_i) as aggr_impr, sum(clicks_i) as aggr_clicks),

jdbc(connection="jdbc:mysql://localhost/cost_dbluser=root&password=root",
sql="SELECT campaign_id_s,currency_cost_i FROM cost",

sort="campaign_id_s asc", driver="com.mysql.jdbc.Driver"),

on="campaign_id_s")

Streaming Expressions - Use cases

Lucidworks

Use case: Join cost data with aggregated conversions, clicks and impressions per campaign for

organisation ‘org-01’

innerjoin(

select(

facet(weekly_data,

q="org_id_s:org-01",

buckets="campaign_id_s",

bucketSorts="campaign_id_s asc",

bucketSizeLimit=100,

sum(conversations_i),

sum(impressions_i),

sum(clicks_i)),
campaign_id_s as campaign_id_s,
sum(conversations_i) as aggr_conv,sum(impressions_i)
as aggr_impr, sum(clicks_i) as aggr_clicks),
jdbc(connection="jdbc:mysql://localhost/cost_db?
user=root&password=root",
sql="SELECT campaign_id_s,currency cost_i FROM cost",
sort="campaign_id_s asc",
driver="com.mysql.jdbc.Driver"),

on="campaign_id_s")

® Stream Decorator @ Stream Source
@ select
@ innerjoin
@ jdbc

"result-set": {
"docs": [
{
"aggr_conv": 41,
"aggr_impr": 1008,
"currency cost_i": 6600,
"aggr _clicks": 259,

"campaign_id s": "cmp-01"

"aggr_conv": 35,
"aggr_impr": 1135,
"currency cost_i": 5840,
"aggr_clicks": 297,
"campaign_id_s": "cmp-02"

}e

Graph Source @ Datastore

@ solr (weekly_data)

@ jdbc-source

{
"aggr _conv": 43,
"aggr_impr": 1068,
"currency cost _i": 8400,
"aggr_clicks": 394,

"campaign_id s": "cmp-03"

"EOF": true,
"RESPONSE_TIME": 57

Streaming Expressions - Use cases Lucidworks

Use case: Calculate useful metrics on data fetched from various sources for ‘org-01’:

® ConverSion ratio (conversions to CIiCkS) ® Stream Decorator @ Stream Source Graph Source @ Datastore
e CTR (clicks to impressions)

. . @ select ® facet @ solr (weekly_data)
® cCost ratio (conver5|ons to currency COSt)

® select @ innerjoin
® jdbc @ jdbc-source
"result-set": {

"docs": [
select({
innerjoin(

ctr": 0.2569444444444444,
"conversion ratio": 0.1583011583011583,

...:;“ . . " "campaign_cost_ratio": 1.609756097560976
on="campaign_id_s"), =

. . }
div(aggr_conv, aggr_clicks) {'
as conversion_ratio, "ctr": 0.2616740088105727,
C“V(aggﬂ_C“CkSa aggr_anpr) "conversion_ratio": 0.1178451178451178,
as ctr, "campaign cost ratio": 1.668571428571429
div(currency_cost_i, aggr_conv) }

as campaign_cost_ratio)

"ctr": 0.3689138576779026,
"conversion ratio": 0.1091370558375635,
"campaign_cost_ratio": 1.953488372093023

b

Streaming Expressions - Use Cases Lucidworks

Use case: Calculate useful metrics on data fetched from different sources for organisations and campaigns:

e Ratios

O conversion ratio (conversions to clicks)

o CTR (clicks to impressions)

O cost ratio (conversions to currency cost) @Grouped OsStacked ®conv
e Time-series ratios %
e Rankings: multi-faceted

Global conversion chart READY [> 07 BB &

B i ¢ M |2 & v settings v

40

20
Plot analytics dashboards on Apache Zeppelin
using Solr Interpreter

(Kiran Chitturi, Lucidworks Inc)
cmp-01 cmp-02 cmp-03

Number of results: 3.

Apache Zeppelin Notebook

https://github.com/lucidworks/zeppelin-solr

Streaming Expressions - Demo Application Lucidworks

eppelin_nowoo

Metrics on Streaming Solr > s a/s Bo wa - [0 [EE) £ @ defauk~

Conversion chart for or(- siep > 27 52 & Impressions chart for o ¢ ysiep > 27 5 @ Cost chart fororg-01 ysien > 57
B o ¢ M v 3 - B o & M ER ¢ B o ¢ M v EAR 4
settings v settings v settings v

@ cmp-01 cmp-02 @ cmp-03 @ cmp-01 cmp-02 @ cmp-03 @ cmp-01 cmp-02 @ cmp-03

Number of results: 3. Number of results: 3. Number of results: 3.
Took 0 sec. Last updated by anonymous at October 08 2018, 10:15:01 Took 0 sec. Last updated by anonymous at October 08 2018, 10:15:01 Took 0 sec. Last updated by anonymous at October 08 2018, 10:15:01

Streaming Expressions - Use cases Lucidworks

Use case: Create a view from result-set of previously discussed use-case:
calculate metrics (index data to new collection)

® Stream Decorator @ Stream Source Graph Source @ Datastore
® select © facet @ solr (weekly_data)
@ solr (report) @ update ® select @ innerjoin
® jdbc @ jdbc-source
update("docs” s |
report, batchSize=500, {
SeleCt(........ nbatchIndexedu . 3'

campaign_id_s as campaign)

)

complexity - O(N)

N - total rows processed

"totalIndexed": 3,
"worker": "currency cost shard4 replica nl4",
"batchNumber": 1

Streaming Expressions - Shuffle Lucidworks

/stream [stream /stream Wg (Client
handler handler handler J L
Worker | } { Worker 2 } Worker 3 } [Worker 4 } { Worker 5 }

Shard | Shard 2 Shard 3 Shard 4 Shard 5
Replica | Replica | Replica | Replica | Replica |
Shard | Shard 2 Shard 3 Shard 4 Shard 5
Replica 2 Replica 2 Replica 2 Replica 2 Replica 2

Streaming Expressions - Shuffle Lucidworks

)

/stream [/stream /stream Wg Client
handler handler handler J ¢

Worker 2 } [Worker 3 } [Worker 4 } { Worker 5 }

[subset S1] “Controlled”
Shard | Shard 2 Shard 3 Shard 4 Shard 5
Replica | Replica | Replica | Replica | Replica |
Shard | Shard 2 Shard 3 Shard 4 Shard 5
Replica 2 Replica 2 Replica 2 Replica 2 Replica 2

[Worker |

Streaming Expressions

Worker
Collections

e Regular SolrCloud collections

® Perform streaming aggregations using the
Streaming API

e Receive shuffled streams from replicas

e May be empty or created just-in-time or
have regular data

® The goal is to separate processing from
data if necessary

Streaming Expressions - Use cases Lucidworks

Use case: Indexing the result-set of discussed use-case (calculate metrics for
organisation) to new collection ‘report’ parallely utilising ‘n’ workers

parallel(worker,

update(report,batchSize=10,

select(

innerjoin(

select(

facet(weekly_data, q="org_id_s:org-01", buckets="campaign_id_s", bucketSorts="campaign_id_s asc", bucketSizeLimit=100,
sum(conversations_i), sum(impressions_i), sum(clicks_i), partitionKeys="campaign_id_s"),

campaign_id_s as campaign_id_s, sum(conversations_i) as aggr_conv, sum(impressions_i) as aggr_impr, sum(clicks_i) as aggr_clicks),
search(cost, zkHost="localhost:9983", qt="/export",q="**", fl="campaign_id_s,org _id_s,currency_cost_i",
partitionKeys="campaign_id_s", sort="campaign_id_s asc"),

on="campaign_id_s"),

div(aggr_conv, aggr_clicks) as conversion_ratio, div(aggr_clicks , aggr_impr) as ctr, div(currency_cost_i, aggr_conv)

as campaign_cost_ratio, campaign_id_s as campaign)),

workers=3,
zkHost="localhost:9983",
sort="campaign asc")

Streaming Expressions - Use cases

Lucidworks

Use case: Indexing the result-set of discussed use-case (calculate metrics for
organisation) to new collection ‘report’ parallely utilising ‘n” workers.

{
@ Stream Decorator @ Stream Source Graph Source @ Datastore
@ select ©® facet @ solr (weekly_data)
@ solr (report) @ update @ select @ innerjoin
® search @ solr (cost)
e
® select O facet @ solr (weekly data) {
@ parallel @ solr (report) @ update ® select @ innerjoin
@ search @ solr (cost)
@ select O facet @ solr (weekly_data)
@ solr (report) @ update ® select ® innerjoin
@ search @ solr (cost) }
r

complexity - Z(W) + O(NXW)/W ~ O(N)/W

N - total rows processed Z - aggregation W - number of workers utilised N >>W

b

"batchIndexed": 1,

"totalIndexed": 1,

"worker": "worker shard2 replica n4"
"batchNumber": 1

"batchIndexed": 1,

"totalIndexed": 1,

"worker": "worker shard3 replica n8"
"batchNumber": 1

"batchIndexed": 1,

"totalIndexed": 1,

"worker": "worker shard4 replica nl2
"batchNumber": 1

Statistical Programming Lucidworks

* Solr’s powerful data retrieval capabilities can be combined with in-depth statistical

analysis.

* SQL, anomaly detection, time-series aggregation, Linear regressions and more..

* Syntax can be used to create arrays from the data so it can be manipulated,

transformed and analyzed; can be used to train models and predict from historical data.

* Statistical function library:
* Percentiles, Euclidean Distance, Normal Distribution, Covariances and more.

* backed by Apache Common Maths Library

https://commons.apache.org/proper/commons-math/

Statistical Programming - Use cases Lucidworks

Use case: Determine correlation among stocks from their historical data.

Correlation measures the extent that two variables fluctuate together. For example if rise of stock A typically coincides

with rise in stock B they are positively correlated. If rise in stock A typically coincides with fall in stock B they are

negatively correlated.

Data EventID (unique) StockID Date Closing points

Representation: stockA- | stockA 01-02-2013 30
stockB- | stockB 01-02-2013 168
stockC-| stockC 01-02-2013 356
stockB-2 stockB 02-02-2013 237
stockA-2 stockA 02-02-2013 43

Feb 2013 to Jan 2017

Statistical Programming - Use cases Lucidworks

Use case: Determine correlation among stocks A to B from their historical data.

let(
stockA=search(historical_stocks_data,

set variables and outputs single tuple

|] . n -1 n . .
zkHost="localhost:9983", qt="/export", limit the resultset to stockA,

q="stock_s:stockA", fl="timestamp_dt, closing_pts_i", assign to variable ‘stockA’

sort="timestamp_dt asc"),
stockB=search(historical_stocks_data, o
limit the resultset to stockB,

zkHost="localhost:9983", qt="/export", . . . ,
assign to variable ‘stockB

q="stock_s:stockB", fl="timestamp_dt, closing_pts_i",
sort="timestamp_dt asc"),

‘col’ func creates array from a list of

pricesA = col(stockA, closing_pts_i),
Tuples

pricesB = col(stockB, closing_pts_i),

[T 1 11

corr evaluator which performs the Pearson
product-moment correlation calculation on
two columns of numbers.

tuple(correlation=corr(pricesA, pricesB)))

Statistical Programming - Use cases

Lucidworks

Use case: Determine correlation among stocks A to B and C from their historical data.

"result-set": {

"docs": [
{
"correlation": 0.999015757799239
}e
{
"EOF": true,
"RESPONSE_TIME": 76
}

‘Ato‘B’

Stock ‘A’ is highly positively correlated to stock
'B’, indicating if there is a future prediction for stock
‘B’ to rise, it is highly likely stocks prices for stock
‘A’ will rise too and similar trend will follow if
falling.

"result-set": {

"docs": [
{
"correlation”": -0.18167359393816224
by
{

"EOF": true,
"RESPONSE_TIME": 99

‘ANto‘C

Stock ‘A’ is moderately negatively correlated to
stock 'C’, indicating prediction for stock ‘A’ cannot
be relied upon stock ‘C’ trend.

Statistical Programming - on Zeppelin Lucidworks

Mapping

let(a=search(testapp, fl="id, loc_p"), >
b=latlonVectors(a, field="loc_p"),
lat=colAt(b, @),
lon=colAt(b, 1),
i=col(a, id),
zplot(lat=lat, lon=lon, id=1i))

gl Bl Bl Rl il i ® £ O Q & + | settings~
\ Warerworks
N Sv‘ o
+ 4 :
i 1293 | i
- .4 NH 101 o
Bedford 2

193

NH 111

13 , Derry
4

Merrimack Londonderry

4 Leaflet | © OpenStreetMap contributors

Number of results: 10.

Statistical Programming - on Zeppelin

Lucidworks

SQL Aggregations

sql(stmt="
select prod_ss, count(*)
from testapp
group by prod_ss
order by count(*) desc

limit 14
ll)
B i ¢ M |~ ® | © Q & -
product9: 7.16% productO: 7.13%
product7: 7.15% productlZ: 7.15%
product34: 7.16% ~ I ' productl6: 7.13%
product32: 7.13% productl?: 7.12%
product30: 7.14% “ ‘ " product19: 7.14%
product27: 7.16% ~ / "~ product2: 7.14%
product25: 7.18% product20: 7.12%
product0 @ productl2 productl6 productl? @ productl9
product20 @ product25 @ product27 product30 product32
product7 product9

Number of results: 14.

settings v

® product2
@ product34

Streaming Expressions & Deeplearning4; Lucidworks

* Eclipse Deeplearning4j is first commercial-grade, open-source, distributed
deep-learning library written for Java and Scala.
* DataSetlterator handles traversing through a dataset and preparing data for a

neural network.

* TupleStreamDataSetlterator is introduced in 1.0.0-beta2 by Christine

Poerschke, Committer PMC Apache Solr.

* Fetches data via Streaming Expressions, sources like Solr Collections, JDBC etc.

https://github.com/deeplearning4j/deeplearning4j/blob/deeplearning4j-1.0.0-beta2/deeplearning4j/deeplearning4j-dataimport-solrj/src/main/java/org/deeplearning4j/nn/dataimport/solr/client/solrj/io/stream/TupleStreamDataSetIterator.java

References & Knowledge Base Lucidworks

» Use cases and examples available on Github: [sarkaramrit2/stream-solr

 Streaming expression official documentation in Apache Solr.

« Statistical Programming official documentation in Apache Solr.
* Joel Bernstein’s blog.

» Zeppelin Visualizer for Streaming Solr.

* Presentation links:

» Applied Mathematical Modeling with Apache Solr

» The Evolution of Streaming Expressions

 Streaming Aggregation, New Horizons for Search

 Analytics and Graph Traversal with Solr

* Creating New Streaming Expressions

https://github.com/sarkaramrit2/stream-solr
https://lucene.apache.org/solr/guide/streaming-expressions.html
https://lucene.apache.org/solr/guide/statistical-programming.html
http://joelsolr.blogspot.in/
https://github.com/apache/lucene-solr/blob/SOLR-13105-visual/solr/solr-ref-guide/src/visualization.adoc
https://www.youtube.com/watch?v=Seawc8qWYLI
https://www.youtube.com/watch?v=kTNe3TaqFvo
https://www.youtube.com/watch?v=n5SYlw0vSFw
https://www.youtube.com/watch?v=AG0eKcRyEeY
https://www.youtube.com/watch?v=YyAgTWGX9nE

Thank you!

Amirit Sarkar
Cloud Search Reliability Engineer
Lucidworks Inc

@sarkaramrit2

#BerlinBuzzwords19

1% Lucidworks

