Stream Analytics with SQL
on Apache Flink®

Fabian Hueske
@fhueske

(
») .
«@ dataArtisans

Berlin Buzzwords
June, 131 2017

Apache Flink

Platform for scalable stream processing

Fast
* Low latency and high throughput

Accurate
* Stateful streaming processing in event time
 Exactly-once state guarantees

Reliable

* Highly available cluster setup
* Snapshot and restart applications

Powered by Flink Ly

a BetterCloud Douygues \.’ Capifa/lonel‘”

Alibaba Group

o=
D_ o |
TRB ’ \@ MedlaM;ath
ERICSSON

MUX ottogroup » zalando

... and many more.

Flink's DataStream API

= The DataStream APl is very expressive
» Application logic implemented as user-defined functions
« Windows, triggers, evictors, state, timers, async calls, ...

= Many applications follow similar patterns
* Do not require the expressiveness of the DataStream API
» Can be specified more concisely and easily with a DSL

Q: What's the most popular DSL for data processing?
A: SQL!

Apache Flink’s Relational APIs

= Standard SQL & LINQ-style Table API

Wm i) i
R 5
Unitfied APls for batch & streaming data |

[Bidda

adusei \

Table

S‘k@“‘\

¢ b

. T’Siﬁ_mj l o] B s
A query specifies exactly the same result
regardless whether its input is

\.. ‘cam cile \/
Logml “
static batch data or streaming data. 4
\Q:gt s | — M\‘_‘ [@q\‘-:?%u\l’:] [
: Commc.)n.tra‘nslatlon layers | B 7 B
+ Optimization based on Apache Calcite

_ \
* Type system & code-generation [DefaSet Dot Stream |
« Table sources & sinks

],

Show me some code!

val tableApiResult: Table = tEnv “clicks” can be a
.scan("clicks") - file
filter('url.like("https://www.xyz.com%") - database table,
.groupBy('user) - stream, ...

.select('user, 'link.count as 'cnt)

val sqlResult: Table = tEnv.sql("""
SELECT user,

COUNT(link) AS cnt
FROM clicks
WHERE url LIKE 'https://www.xyz.com%'
GROUP BY user
""" stripMargin)

What if “clicks” is a file?

| user | cTime | url | link | e ~N
12:00:00 | https://... SELECT
00- , user,
12:00:00 | https://... TGS oo
12:00:02 | https:/... FROM clicks
GROUP BY user
12:00:03 | https://... _)

Q: What if we get more click data?
A: We run the query again.

What if “clicks” is a stream? L.
=

D‘-& T;MSMHO‘Ab

R 1IN - We want the same
i e results as for batch
input!

= Does SQL work on
streams as well?

SQL was not designed for streams =

Relations are

bounded (multi-)sets.

= DBMS can access

all data.

= SQL queries return a

result and complete.

<> Streams are infinite
sequences.

«» Streaming data arrives
over time.

«» Streaming queries
continuously emit results
and never complete.

DBMSs run queries on streams e

= Materialized views (MV) are similar to regular views,
but persisted to disk or memory
» Used to speed-up analytical queries
* MVs need to be updated when the base tables change

= MV maintenance is very similar to SQL on streams
* Base table updates are a stream of DML statements
* MV definition query is evaluated on that stream
* MV is query result and continuously updated

10

Continuous Queries in Flink L.

= Core concept is a “Dynamic Table”
* Dynamic tables are changing over time

= Queries on dynamic tables
* produce new dynamic tables (which are updated based on input)
* do not terminate

= Stream < Dynamic table conversions

L;v ——

Couh o e D 8 —p .
% s
—> Quzy"““"‘“ —> !1';:',: SHieamm

e —— » 1
- \ - _B;nram ic
Skeo.mg .)) | “Table

11

Stream — Dynamic Table

Append mode

Stream records are appended to table

Table grows as more data arrives

ul, 12:00:00, https://...
u2, 12:OO:OO,Ihttps://...
ut, 12:00:05,.https://...
u3, 12:01:00,.https://...
uz, 12:01:30,. https://...
utl, 12:01:45,.https://...

VVVVVV

m“m
12:00:00 https://...

u2 12:00:00 https://... 12

ul 12:00:05 https://... 13

u3 12:01:00 https://... 12

u2 12:01:30 https://... 14

u’ 12:01:45 https://... 12

12

Stream — Dynamic Table =

= Upsert mode
* Stream records have (composite) key attributes
* Records are inserted or update existing records with same key

ul, Mary, 2017-03-01 - —n_ m
u2, Bob, 2017-03-15 N _E
ul, Mary, 2017-04-01 MRS :
u3, Peter, 2017-05-01 ,

u2, Bob, 2017-06-01

ul, Mary, 2017-07-01

13

Querying a Dynamic Table =

| >ERE
SELECT] a2 1
e vk a8 e > R
FROM clicks

GROUP BY user

Rows of result table are updated.

14

What about windows?

val tableApiResult: Table = tEnv
.scan("clicks")
.window(Tumble over 1.hour on 'cTime as 'w)
.groupBy('w, 'user)
.select('user, 'w.end AS endT, 'link.count as 'cnt)

val sqlResult: Table = tEnv.sql("""

SELECT user,
TUMBLE_END(cTime, INTERVAL 'l1' HOURS) AS endT,
COUNT(1link) AS cnt

FROM clicks

GROUP BY TUMBLE(cTime, INTERVAL '1' HOURS), user

""" . stripMargin)

15

Computing Window Aggregates =

oo [ome [

r
SELECT
user,
TUMBLE_END(
cTime,
INTERVAL '1' HOURS)
AS endT,
COUNT(1link) AS cnt
FROM clicks
GROUP BY
user,
TUMBLE (
cTime,
INTERVAL '1' HOURS)

.

~

V.

Rows are appended to result table. 16

Dynamic Table — Stream Ly

= Converting a dynamic table into a stream
* Dynamic tables might update or delete existing rows
+ Updates must be encoded in outgoing stream

= Conversion of tables to streams inspired by DBMS logs
- DBMS use logs to restore databases (and tables)
* REDO logs store new records to redo changes
* UNDO logs store old records to undo changes

17

Dynamic Table — Stream: REDO/UNDO ..

clicks

user | link
ul 1 —f \
uz |2 =1 SELECT
ul 13 - user,

COUNT(1link) as cnt
ud. 11~ rrom clicks

u3 |2 -4 GROUP BY user
ul 14 AL)
| |

+ INSERT / - DELETE

Yy vV Yy v vV VvV VvV VvV V.

e]38 -yl,2 &= +u3,2 & -u3,17 &= +u3,1 & +ul,2 = -uyl,T = +u2,1 = +u1,1)

18

Dynamic Table — Stream: REDO

user | link |
e D

SELECT

user,

COUNT(1link) as cnt
FROM clicks
GROUP BY user

PR\ _ J— ‘

+ INSERT, * UPDATE (by KEY), - DELETE (by KEY)

VVVVVVI

19

Can we run any query on a dynamic table? ..

= No, there are space and computation constraints @

- State size may not grow infinitely as more data arrives

SELECT user, COUNT(link) FROM clicks GROUP BY user;

= A change of an input table may only trigger a partial
re-computation of the result table

SELECT user, RANK() OVER (ORDER BY lastLogin) FROM users;

20

Bounding the Size of Query State

= Adapt the semantics of the query

SELECT user, COUNT(1link) AS cnt
FROM clicks

WHERE last(cTime, INTERVAL '1' DAY)
GROUP BY user

« Aggregate data of last 24 hours. Discard older data.

= Trade the accuracy of the result for size of state
* Remove state for keys that became inactive.

21

Current State of SQL & Table API L.

= Flink’s relational APls are rapidly evolving
* Lots of interest by community and many contributors
* Used in production at large scale by Alibaba and others

= Features released in Flink 1.3.0

* GroupBy & Over windowed aggregates

* Non-windowed aggregates
(with update changes)

 User-defined aggregation functions

What can be built with this? N

=5 ch‘w\ugus AWQ“C" ' Qfm —+
\"@

* Process with transformations & window aggregates
 Write to files (Parquet, ORC), Katka, PostgreSQL, HBase, ...

= Continuous ETL
+ Continuously ingest data

23

What can be built with this? N

;i?‘j Faﬁ‘.—
— |(ohnuons M. '
U :

b’POK':Vk Vl\‘u\D" '

= Dashboards, reporting & event-driven architectures
* Flink updates query results with low latency

* Result is written to KV store, DBMS, compacted Kafka topic
= Later, results can be maintained as queryable state

24

Conclusion l.

= Table APl & SQL support many streaming use cases
* High-level / declarative specification
* Automatic optimization and translation
* Efficient execution
* Scalar, table, aggregation UDFs for flexibility

= Updating results enable many exciting applications

= Check it out!

25

Berlin
11-13 Sep 2017

Flink Forward, the premier
conference on Apache Flink®,
is coming back to Berlin

Call for Submissions'is open

OREILLY"

Thank you!

@thueske
Stream |
Processing with @ApacheFlink
Apache Flink @dataArtisans

FUNDAMENTALS, IMPLEMENTATION, AND OPERATION
OF STREAMING APPLICATIONS

Fabian Hueske & Vasiliki Kalavri

Available on O'Reilly Early Release!

dataArtisans

We are hiring!
data-artisans.com/careers

Tables are materialized streams L.

= A table is the materialization of a stream of modifications
« SQL DML statements: INSERT, UPDATE, and DELETE
+ DBMSs process statements by modifying tables

INSERT (ul, Mary, "2017-03-01")

uf Mary 2017-06-01

INSERT (u2, Peter, "2017-05-01")

UPDATE (lastlLogin = "2017-06-01") u2 Peter ~ 2017-05-01
WHERE (user = ul)

DELETE WHERE (user = u2)

30

About me =

= Apache Flink PMC member

* Contributing since day 1 at TU Berlin
* Focusing on Flink’s relational APls since 1.5 years

= Co-author of “Stream Processing with Apache Flink”
* Work in progress...

= Co-founder of data Artisans

31

dataArtisans

PLATFORM
Original creators of Apache Providers of the
Flink® dA Platform, a supported

Flink distribution

32

