
1

Fabian Hueske
@fhueske

Berlin Buzzwords
June, 13th 2017

Stream Analytics with SQL
on Apache Flink®

Apache Flink

▪ Platform for scalable stream processing

▪ Fast
• Low latency and high throughput

▪ Accurate
• Stateful streaming processing in event time
• Exactly-once state guarantees

▪ Reliable
• Highly available cluster setup
• Snapshot and restart applications

2

Powered by Flink

3

… and many more.

Flink’s DataStream API

▪ The DataStream API is very expressive
• Application logic implemented as user-defined functions
• Windows, triggers, evictors, state, timers, async calls, …

▪ Many applications follow similar patterns
• Do not require the expressiveness of the DataStream API
• Can be specified more concisely and easily with a DSL

Q: What’s the most popular DSL for data processing?
A: SQL!

4

Apache Flink’s Relational APIs
▪ Standard SQL & LINQ-style Table API

▪ Unified APIs for batch & streaming data

A query specifies exactly the same result
 regardless whether its input is
 static batch data or streaming data.

▪ Common translation layers
• Optimization based on Apache Calcite
• Type system & code-generation
• Table sources & sinks

5

Show me some code!
val tableApiResult: Table = tEnv
 .scan("clicks")
 .filter('url.like("https://www.xyz.com%")
 .groupBy('user)
 .select('user, 'link.count as 'cnt)

val sqlResult: Table = tEnv.sql("""
 |SELECT user,
 | COUNT(link) AS cnt
 |FROM clicks
 |WHERE url LIKE 'https://www.xyz.com%'
 |GROUP BY user
 """.stripMargin)

6

“clicks” can be a
- file
- database table,
- stream, …

What if “clicks” is a file?

7

user cTime url link

u1 12:00:00 https://… l1

u2 12:00:00 https://… l2

u1 12:00:02 https://… l3

u3 12:00:03 https://… l2

user cnt

u1 2

u2 1

u3 1

Q: What if we get more click data?
A: We run the query again.

SELECT
 user,
 COUNT(link) as cnt
FROM clicks
GROUP BY user

What if “clicks” is a stream?

8

▪ We want the same
results as for batch
input!

▪ Does SQL work on
streams as well?

SQL was not designed for streams

▪ Relations are
bounded (multi-)sets.

▪ DBMS can access
all data.

▪ SQL queries return a
result and complete.

9

Streams are infinite
sequences.

Streaming data arrives
over time.

Streaming queries
continuously emit results
and never complete.

↔

↔

↔

DBMSs run queries on streams

▪ Materialized views (MV) are similar to regular views,
but persisted to disk or memory
• Used to speed-up analytical queries
• MVs need to be updated when the base tables change

▪ MV maintenance is very similar to SQL on streams
• Base table updates are a stream of DML statements
• MV definition query is evaluated on that stream
• MV is query result and continuously updated

10

Continuous Queries in Flink

▪ Core concept is a “Dynamic Table”
• Dynamic tables are changing over time

▪ Queries on dynamic tables
• produce new dynamic tables (which are updated based on input)
• do not terminate

▪ Stream ↔ Dynamic table conversions

11

Stream → Dynamic Table

▪ Append mode
• Stream records are appended to table
• Table grows as more data arrives

12

user cTime url link

u1 12:00:00 https://… l1

u2 12:00:00 https://… l2

u1 12:00:05 https://… l3

u3 12:01:00 https://… l2

u2 12:01:30 https://… l4

u1 12:01:45 https://… l2

… …

u1, 12:00:00, https://…, l1

u2, 12:00:00, https://…, l2

u1, 12:00:05, https://…, l3

u3, 12:01:00, https://…, l2

u2, 12:01:30, https://…, l4

u1, 12:01:45, https://…, l2

Stream → Dynamic Table

▪ Upsert mode
• Stream records have (composite) key attributes
• Records are inserted or update existing records with same key

13

user name lastLogin

u1 Mary 2017-07-01

u2 Bob 2017-06-01

u3 Peter 2017-05-01

… …

u1, Mary, 2017-03-01

u2, Bob, 2017-03-15

u1, Mary, 2017-04-01

u3, Peter, 2017-05-01

u2, Bob, 2017-06-01

u1, Mary, 2017-07-01

Querying a Dynamic Table

user link

u3 l2

u1 l4

clicks

u2 l2

u1 l1

u1 l3

u3 l1

user cnt

u1 1

result

u2 1

u3 1

u1 2

u3 2

u1 3

SELECT
 user,
 COUNT(link) as cnt
FROM clicks
GROUP BY user

Rows of result table are updated.

14

What about windows?
val tableApiResult: Table = tEnv
 .scan("clicks")
 .window(Tumble over 1.hour on 'cTime as 'w)
 .groupBy('w, 'user)
 .select('user, 'w.end AS endT, 'link.count as 'cnt)

val sqlResult: Table = tEnv.sql("""
 |SELECT user,
 | TUMBLE_END(cTime, INTERVAL '1' HOURS) AS endT,
 | COUNT(link) AS cnt
 |FROM clicks
 |GROUP BY TUMBLE(cTime, INTERVAL '1' HOURS), user
 """.stripMargin)

15

user time link

clicks

Computing Window Aggregates

user endT cnt

u1 13:00:00 3

u2 13:00:00 1

result

u2 14:00:00 1

u3 14:00:00 2

u1 15:00:00 1

u2 15:00:00 2

u3 15:00:00 1

u1 12:00:00 l1

u2 12:00:00 l2

u1 12:02:00 l2

u1 12:55:00 l4

u1 14:00:00 l1

u3 14:02:00 l2

u2 14:30:00 l2

u2 14:40:00 l4

u2 13:01:00 l1

u3 13:30:00 l4

u3 13:59:00 l3

SELECT
 user,
 TUMBLE_END(
 cTime,
 INTERVAL '1' HOURS)
 AS endT,
 COUNT(link) AS cnt
FROM clicks
GROUP BY
 user,
 TUMBLE(
 cTime,
 INTERVAL '1' HOURS)

Rows are appended to result table. 16

Dynamic Table → Stream

▪ Converting a dynamic table into a stream
• Dynamic tables might update or delete existing rows
• Updates must be encoded in outgoing stream

▪ Conversion of tables to streams inspired by DBMS logs
• DBMS use logs to restore databases (and tables)
• REDO logs store new records to redo changes
• UNDO logs store old records to undo changes

17

Dynamic Table → Stream: REDO/UNDO

user link

clicks

+ u2,1+ u1,2+ u3,1+ u3,2+ u1,3 + u1,1- u1,1- u3,1- u1,2

u1 l1

u2 l2

u1 l3

u3 l1

u3 l2

u1 l4

… …

SELECT
 user,
 COUNT(link) as cnt
FROM clicks
GROUP BY user

+ INSERT / - DELETE

18

Dynamic Table → Stream: REDO

+ u2,1* u1,2+ u3,1* u3,2* u1,3 + u1,1

+ INSERT, * UPDATE (by KEY), - DELETE (by KEY)

user link

clicks

u1 l1

u2 l2

u1 l3

u3 l1

u3 l2

u1 l4

… …

SELECT
 user,
 COUNT(link) as cnt
FROM clicks
GROUP BY user

19

Can we run any query on a dynamic table?

▪ No, there are space and computation constraints ☹

▪ State size may not grow infinitely as more data arrives

SELECT user, COUNT(link) FROM clicks GROUP BY user;

▪ A change of an input table may only trigger a partial
re-computation of the result table

SELECT user, RANK() OVER (ORDER BY lastLogin) FROM users;

20

Bounding the Size of Query State

▪ Adapt the semantics of the query

• Aggregate data of last 24 hours. Discard older data.

▪ Trade the accuracy of the result for size of state
• Remove state for keys that became inactive.

21

SELECT user, COUNT(link) AS cnt
FROM clicks
WHERE last(cTime, INTERVAL '1' DAY)
GROUP BY user

Current State of SQL & Table API

▪ Flink’s relational APIs are rapidly evolving
• Lots of interest by community and many contributors
• Used in production at large scale by Alibaba and others

▪ Features released in Flink 1.3.0
• GroupBy & Over windowed aggregates
• Non-windowed aggregates

(with update changes)
• User-defined aggregation functions

22

What can be built with this?

▪ Continuous ETL
• Continuously ingest data
• Process with transformations & window aggregates
• Write to files (Parquet, ORC), Kafka, PostgreSQL, HBase, …

23

What can be built with this?

24

▪ Dashboards, reporting & event-driven architectures
• Flink updates query results with low latency
• Result is written to KV store, DBMS, compacted Kafka topic

▪ Later, results can be maintained as queryable state

Conclusion

▪ Table API & SQL support many streaming use cases
• High-level / declarative specification
• Automatic optimization and translation
• Efficient execution
• Scalar, table, aggregation UDFs for flexibility

▪ Updating results enable many exciting applications

▪ Check it out!

25

Thank you!
@fhueske
@ApacheFlink
@dataArtisans

Available on O’Reilly Early Release!

We are hiring!

data-artisans.com/careers

Tables are materialized streams

▪ A table is the materialization of a stream of modifications
• SQL DML statements: INSERT, UPDATE, and DELETE
• DBMSs process statements by modifying tables

30

user name lastLogin

u2 Peter 2017-05-01

u1 Mary 2017-03-01u1 Mary 2017-06-01
INSERT (u1, Mary, "2017-03-01")

INSERT (u2, Peter, "2017-05-01")

DELETE WHERE (user = u2)

UPDATE (lastLogin = "2017-06-01")
 WHERE (user = u1)

About me
▪ Apache Flink PMC member

• Contributing since day 1 at TU Berlin
• Focusing on Flink’s relational APIs since 1.5 years

▪ Co-author of “Stream Processing with Apache Flink”
• Work in progress…

▪ Co-founder of data Artisans

31

32

Original creators of Apache
Flink®

Providers of the
dA Platform, a supported

Flink distribution

