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Apache Flink

Platform for scalable stream processing

Fast
* Low latency and high throughput

Accurate
* Stateful streaming processing in event time
 Exactly-once state guarantees

Reliable

* Highly available cluster setup
* Snapshot and restart applications
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Flink's DataStream API

= The DataStream APl is very expressive
» Application logic implemented as user-defined functions
« Windows, triggers, evictors, state, timers, async calls, ...

= Many applications follow similar patterns
* Do not require the expressiveness of the DataStream API
» Can be specified more concisely and easily with a DSL

Q: What's the most popular DSL for data processing?
A: SQL!



Apache Flink’s Relational APIs

= Standard SQL & LINQ-style Table API
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Show me some code!

val tableApiResult: Table = tEnv “clicks” can be a
.scan("clicks") - file
filter('url.like("https://www.xyz.com%") - database table,
.groupBy( 'user) - stream, ...

.select('user, 'link.count as 'cnt)

val sqlResult: Table = tEnv.sql("""
SELECT user,

COUNT(link) AS cnt
FROM clicks
WHERE url LIKE 'https://www.xyz.com%'
GROUP BY user
""" stripMargin)




What if “clicks” is a file?

| user | cTime | url | link | e ~N
12:00:00 | https://... SELECT
00- , user,
12:00:00 | https://... TGS oo
12:00:02 | https:/... FROM clicks
GROUP BY user
12:00:03 | https://... \_ )

Q: What if we get more click data?
A: We run the query again.




What if “clicks” is a stream? L.
=

D‘-& T;MSMHO‘Ab

R 1IN - We want the same
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= Does SQL work on
streams as well?




SQL was not designed for streams =

Relations are

bounded (multi-)sets.

= DBMS can access

all data.

= SQL queries return a

result and complete.

<> Streams are infinite
sequences.

«» Streaming data arrives
over time.

«» Streaming queries
continuously emit results
and never complete.



DBMSs run queries on streams e

= Materialized views (MV) are similar to regular views,
but persisted to disk or memory
» Used to speed-up analytical queries
* MVs need to be updated when the base tables change

= MV maintenance is very similar to SQL on streams
* Base table updates are a stream of DML statements
* MV definition query is evaluated on that stream
* MV is query result and continuously updated
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Continuous Queries in Flink L.

= Core concept is a “Dynamic Table”
* Dynamic tables are changing over time

= Queries on dynamic tables
* produce new dynamic tables (which are updated based on input)
* do not terminate

= Stream < Dynamic table conversions
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Stream — Dynamic Table

Append mode

Stream records are appended to table

Table grows as more data arrives

ul, 12:00:00, https://...
u2, 12:OO:OO,Ihttps://...
ut, 12:00:05,.https://...
u3, 12:01:00,.https://...
uz, 12:01:30,. https://...
utl, 12:01:45,.https://...

VVVVVV
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12:00:00 https://...

u2  12:00:00 https://... 12

ul 12:00:05 https://... 13

u3 12:01:00 https://... 12

u2 12:01:30 https://... 14

u’ 12:01:45 https://... 12
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Stream — Dynamic Table =

= Upsert mode
* Stream records have (composite) key attributes
* Records are inserted or update existing records with same key

ul, Mary, 2017-03-01 - —n_ m
u2, Bob, 2017-03-15 N _E
ul, Mary, 2017-04-01 MRS :
u3, Peter, 2017-05-01 ,

u2, Bob, 2017-06-01

ul, Mary, 2017-07-01
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Querying a Dynamic Table =

| >ERE
SELECT ] a2 1
e vk a8 e > R
FROM clicks

GROUP BY user

Rows of result table are updated.
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What about windows?

val tableApiResult: Table = tEnv
.scan("clicks")
.window(Tumble over 1.hour on 'cTime as 'w)
.groupBy('w, 'user)
.select('user, 'w.end AS endT, 'link.count as 'cnt)

val sqlResult: Table = tEnv.sql("""

SELECT user,
TUMBLE_END(cTime, INTERVAL 'l1' HOURS) AS endT,
COUNT(1link) AS cnt

FROM clicks

GROUP BY TUMBLE(cTime, INTERVAL '1' HOURS), user

""" . stripMargin)
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Computing Window Aggregates =

oo [ome [

r
SELECT
user,
TUMBLE_END(
cTime,
INTERVAL '1' HOURS)
AS endT,
COUNT(1link) AS cnt
FROM clicks
GROUP BY
user,
TUMBLE (
cTime,
INTERVAL '1' HOURS)

.
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Rows are appended to result table. 16



Dynamic Table — Stream Ly

= Converting a dynamic table into a stream
* Dynamic tables might update or delete existing rows
+ Updates must be encoded in outgoing stream

= Conversion of tables to streams inspired by DBMS logs
- DBMS use logs to restore databases (and tables)
* REDO logs store new records to redo changes
* UNDO logs store old records to undo changes
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Dynamic Table — Stream: REDO/UNDO ..

clicks

user | link
ul 1 —f \
uz |2 =1 SELECT
ul 13 - user,

COUNT(1link) as cnt
ud. 11~ rrom clicks

u3 |2 -4 GROUP BY user
ul 14 AL )
| |

+ INSERT / - DELETE

Yy vV Yy v vV VvV VvV VvV V.

e ]38 -yl,2 &= +u3,2 & -u3,17 &= +u3,1 & +ul,2 = -uyl,T = +u2,1 = +u1,1)
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Dynamic Table — Stream: REDO

user | link |
e D

SELECT

user,

COUNT(1link) as cnt
FROM clicks
GROUP BY user

PR\ _ J— ‘

+ INSERT, * UPDATE (by KEY), - DELETE (by KEY)
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Can we run any query on a dynamic table? ..

= No, there are space and computation constraints @

- State size may not grow infinitely as more data arrives

SELECT user, COUNT(link) FROM clicks GROUP BY user;

= A change of an input table may only trigger a partial
re-computation of the result table

SELECT user, RANK() OVER (ORDER BY lastLogin) FROM users;
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Bounding the Size of Query State

= Adapt the semantics of the query

SELECT user, COUNT(1link) AS cnt
FROM clicks

WHERE last(cTime, INTERVAL '1' DAY)
GROUP BY user

« Aggregate data of last 24 hours. Discard older data.

= Trade the accuracy of the result for size of state
* Remove state for keys that became inactive.
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Current State of SQL & Table API L.

= Flink’s relational APls are rapidly evolving
* Lots of interest by community and many contributors
* Used in production at large scale by Alibaba and others

= Features released in Flink 1.3.0

* GroupBy & Over windowed aggregates

* Non-windowed aggregates
(with update changes)

 User-defined aggregation functions




What can be built with this? N
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* Process with transformations & window aggregates
 Write to files (Parquet, ORC), Katka, PostgreSQL, HBase, ...

= Continuous ETL
+ Continuously ingest data
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What can be built with this? N
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= Dashboards, reporting & event-driven architectures
* Flink updates query results with low latency

* Result is written to KV store, DBMS, compacted Kafka topic
= Later, results can be maintained as queryable state
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Conclusion l.

= Table APl & SQL support many streaming use cases
* High-level / declarative specification
* Automatic optimization and translation
* Efficient execution
* Scalar, table, aggregation UDFs for flexibility

= Updating results enable many exciting applications

= Check it out!
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Berlin
11-13 Sep 2017

Flink Forward, the premier
conference on Apache Flink®,
is coming back to Berlin

Call for Submissions'is open
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Thank you!

@thueske
Stream |
Processing with @ApacheFlink
Apache Flink @dataArtisans

FUNDAMENTALS, IMPLEMENTATION, AND OPERATION
OF STREAMING APPLICATIONS

Fabian Hueske & Vasiliki Kalavri

Available on O'Reilly Early Release!



dataArtisans

We are hiring!
data-artisans.com/careers






Tables are materialized streams L.

= A table is the materialization of a stream of modifications
« SQL DML statements: INSERT, UPDATE, and DELETE
+ DBMSs process statements by modifying tables

INSERT (ul, Mary, "2017-03-01")

uf Mary 2017-06-01

INSERT (u2, Peter, "2017-05-01")

UPDATE (lastlLogin = "2017-06-01") u2 Peter ~ 2017-05-01
WHERE (user = ul)

DELETE WHERE (user = u2)
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About me =

= Apache Flink PMC member

* Contributing since day 1 at TU Berlin
* Focusing on Flink’s relational APls since 1.5 years

= Co-author of “Stream Processing with Apache Flink”
* Work in progress...

= Co-founder of data Artisans
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dataArtisans

PLATFORM
Original creators of Apache Providers of the
Flink® dA Platform, a supported

Flink distribution
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