Stream Processing for the Practitioner:

Blueprints for Common Stream Processing
Use Cases with Apache Flink®

Konstantinos Kloudas, Software Engineer @ data Artisans

slides by Aljoscha Krettek, Software Engineer @ data Artisans

dataArtisans

About Data Artisans

PLATFORM

Original creators of Open Source Apache Flink
Apache Flink® + dA Application Manager

What is stream processing and
why is it useful?

Use Case: “Suspicious Behaviour” Detection

* Dropbox, Google Suite, Box
e Sharing, accessing, and
Some service modifying data produces events
or app that we can/want to analyse
« Banking
 \We monitor all transactions, know
the user data

Use Case: “Suspicious Behaviour” Detection

 Spits out alerts when suspicious
stuff is happening
« “More than 10 failed login

Some service “Magic” rules attempts”
or app engine « "Sharing more than 100 files
within 1 Hour”

* “Impossible Travel”/"Magic
carpet travel”

« “Continuously increasing
withdrawal amounts”

Use Case: “Suspicious Behaviour” Detection

Ok, let me just use a single machine for this!

* What if the load becomes too high? = I'll use a distributed batch
processor. (Hadoop MapReduce, Spark, and the like)

* This runs nightly? Isn't the latency very high then? | don't want to
wait a day for my alerts @

| need alerts in real time > Apache Flink® is a real-time,
distributed, stateful, and fault-tolerant stream processor

Detour: Thinking in Flows

sink
user operations/user code
source
T
l / \ Apply Send
Rules Alerts
<>
e | —
at Filter Transform
Ingress ™
1 State

Persist to

database

flow of data / events

Why flows and operations?

* This is how the physical world works
* Operations can be composed and are reusable

* Allows a system (Flink) to take these operations and execute them
on different machines

* A system can execute the same operation multiple times on several
machines to deal with high workloads

Apache Flink® distributed stateful stream processor

Note how we have the

operation twice

(
? o Aens s l
Data »| Filter »| Transfor m - / /é)
e o gk
P :

ersist to l‘;
database

Flink has nice APIs for writing these!

Apache Flink® distributed stateful stream processor

* Questions that a good stream processing system needs to have
answers for:

—What happens when machines fail or when user operations fail?
—What happens if | move my stateful operations/tflows/jobs?

—What happens if | need to change the schema of the state that
operations keep?

—How can | update framework code while keeping my program
state?

—Same for user code?

Common stream processing
blueprints

Blueprint: Aggregation of timestamped data

 Use cases

—Give me the number of tweet impressions per tweet for every
hour/day/...

—Calculate the average temperature over 10 minute intervals for
each sensor in my warehouse

—Aggregate user interaction data for my website to display on my
internal dashboards

Blueprint: Aggregation of timestamped data

windowed
aggregation

source

state: contents of all the in-flight windows

Blueprint: Aggregation of timestamped data

Some things to look out for.

* Do | want to window by event-time or processing time?
* |f using event-time, how do | know when my window is “done”?

* What happens it data arrives out of order with respect to their
timestamp?

* If using event-time, when is data considered late?
* What should happen with late data?

Blueprint: Aggregation of timestamped data

Flink features to look at.

* Windowing API

* Timestamp assigners/watermark extractors for defining event-time
and defining “readiness”

* Allowed lateness for defining when data is late
* Side output of late data as a special flow path

Blueprint: Aggregation of timestamped data

allowed lateness: 10 min

windowed write to

kinesis . .
aggregation Elastic

extract timestamps/watermarks

side output alert real
late data humans

Blueprint: Enriching data with “side input”

* Use cases
—Enrich user events with known user data
—Add geolocation information to geotagged events

Blueprint: Enriching data with “side input”

. . windowed write to
kafka f||ter en”Ch aggregation Elastic
alert real

humans

Blueprint: Enriching data with “side input”

. . windowed write to
kafka f||ter eﬂI’ICh aggregation Elastic
alert real

humans

Blueprint: Enriching data with “side input”

synchronous access to
external data store for
every element

Naive approach

windowed write to
aggregation Elastic

kafka filter

alert real
humans

Blueprint: Enriching data with “side input”

asynchronous access
to external data store
for every element

Slightly better approach

windowed write to
aggregation Elastic

kafka filter

alert real
humans

Blueprint: Enriching data with “side input”

keep the enrichment

changelog data in Flink state itself
Input

. windowed write to

kafka f| |tel’ aggregation Elastic
alert real

humans

“Next-level” approach

Blueprint: Enriching data with “side input”

Flink features to look at.

* Regular user functions/operations
* Async I/O operation for more efficient data store accesses
* Two-input operations and stateful operations

Blueprint: Dynamic processing

 Use cases

—Update of processing rules via DSL, think dynamic fraud-
detection rules/policies

—Live-update of machine learning models

Blueprint: Dynamic processing

broadcast

stream

pre- dynamic
processing processing

broadcast
state

Blueprint: Dynamic processing

Flink features to look at.

* ProcessFunction
* Broadcast streams and broadcast state

Closing

27 | © 2018 data Artisans

Learnings

* For immediate results you probably need a stream processor
* Start thinking in terms of data flows and reusable operations

 Getting state fault-tolerance, and event-time right is tough, check
what your stream processor has as answers for those questions

* Flink has your use cases covered

28 © 2018 data Artisans

The Apache Flink® Conference
Stream Processing | Event Driven | Real Time

F RW A R D 3 SEPTEMBER 2018: TRAINING
4-5 SEPTEMBER 2018: CONFERENCE

organized by Artisans BERLIN, GERMANY

Register at berlin.flink-forward.org

Early bird prices available until June 22

@dataArtisans #flinkforward

Thank you!

We are hiring!

data-artisans.com/careers

@dataArtisans
@ApacheFlink

dataArtisans

mailto:aljoscha@apache.org

Hardened at scale

UBER

Streaming Platform Service

billions messages per day
A lot of Stream SQL

€.

Alibaba Group

1000s jobs, 100.000s cores,
10 TBs state, metrics, analytics,
real time ML,
Streaming SQL as a platform

NETFLIX

Streaming Platform as a Service
3700+ container running Flink,
1400+ nodes, 22k+ cores, 100s of jobs,
3 trillion events / day, 20 TB state

Fraud detection
Streaming Analytics Platform

Powered by Apache Flink

WEZ . INGB) NETFLX UBER
\dlg’ "cll s Ic;' accenture @ Expedia

DLLEMC yelpis YR @z
aMaDEUs LINE Yelefonica
bol.com” S|?"?elecom O\g :m relayr.

S

HUAWEI

ebay

D_
TRB

Better\(\ZIoud

/)

COMCAST

N

Caplta/l()mf

» zalando

otto group

