
Konstantinos Kloudas, Software Engineer @ data Artisans
slides by Aljoscha Krettek, Software Engineer @ data Artisans

Stream Processing for the Practitioner: 
Blueprints for Common Stream Processing 

Use Cases with Apache Flink®



© 2018 data Artisans2

About Data Artisans

Original creators of
Apache Flink® 

Open Source Apache Flink
+ dA Application Manager



© 2018 data Artisans3

What is stream processing and
why is it useful?



© 2018 data Artisans4

Use Case: “Suspicious Behaviour“ Detection

Some service 
or app

• Dropbox, Google Suite, Box
• Sharing, accessing, and 

modifying data produces events 
that we can/want to analyse

• Banking
• We monitor all transactions, know 

the user data



© 2018 data Artisans5

Use Case: “Suspicious Behaviour“ Detection

Some service 
or app

• Spits out alerts when suspicious 
stuff is happening
• “More than 10 failed login 

attempts”
• ”Sharing more than 100 files 

within 1 Hour”
• “Impossible Travel”/”Magic 

carpet travel”
• “Continuously increasing 

withdrawal amounts”

“Magic” rules 
engine



© 2018 data Artisans6

Use Case: “Suspicious Behaviour“ Detection

• What if the load becomes too high? à I’ll use a distributed batch 
processor. (Hadoop MapReduce, Spark, and the like)

• This runs nightly? Isn’t the latency very high then? I don’t want to 
wait a day for my alerts !

Ok, let me just use a single machine for this!

I need alerts in real time à Apache Flink® is a real-time, 
distributed, stateful, and fault-tolerant stream processor 



© 2018 data Artisans7

Detour: Thinking in Flows

TransformFilterData 
Ingress

Apply 
Rules

Persist to 
database

Send 
Alerts

source

sink

State

user operations/user code

flow of data / events



© 2018 data Artisans8

Why flows and operations?

• This is how the physical world works

• Operations can be composed and are reusable

• Allows a system (Flink) to take these operations and execute them 
on different machines

• A system can execute the same operation multiple times on several 
machines to deal with high workloads



© 2018 data Artisans9

Apache Flink® distributed stateful stream processor
Machine 1

Machine 2

Data 
Ingress Filter

Transform Apply 
Rules

Apply 
Rules

Send 
AlertsFlink has nice APIs for writing these!

Note how we have the 
“expensive” stateful 
operation twice

Persist to 
database

TransformFilterData 
Ingress

Apply 
Rules

Persist to 
database

Send 
Alerts



© 2018 data Artisans10

Apache Flink® distributed stateful stream processor

• Questions that a good stream processing system needs to have 
answers for:
‒What happens when machines fail or when user operations fail?
‒What happens if I move my stateful operations/flows/jobs?
‒What happens if I need to change the schema of the state that 

operations keep?
‒How can I update framework code while keeping my program 

state?
‒Same for user code?



© 2018 data Artisans11

Common stream processing
blueprints



© 2018 data Artisans12

Blueprint: Aggregation of timestamped data

• Use cases
‒Give me the number of tweet impressions per tweet for every 

hour/day/…
‒Calculate the average temperature over 10 minute intervals for 

each sensor in my warehouse
‒Aggregate user interaction data for my website to display on my 

internal dashboards



© 2018 data Artisans13

Blueprint: Aggregation of timestamped data

windowed
aggregationsource sink

state: contents of all the in-flight windows



© 2018 data Artisans14

Blueprint: Aggregation of timestamped data

• Do I want to window by event-time or processing time?
• If using event-time, how do I know when my window is “done”?
• What happens if data arrives out of order with respect to their 

timestamp?
• If using event-time, when is data considered late?
• What should happen with late data?

Some things to look out for.



© 2018 data Artisans15

Blueprint: Aggregation of timestamped data

• Windowing API
• Timestamp assigners/watermark extractors for defining event-time 

and defining “readiness”
• Allowed lateness for defining when data is late
• Side output of late data as a special flow path

Flink features to look at.



© 2018 data Artisans16

Blueprint: Aggregation of timestamped data

windowed
aggregationkinesis write to 

Elastic

alert real 
humanslate data

allowed lateness: 10 min

extract timestamps/watermarks

side output



© 2018 data Artisans17

Blueprint: Enriching data with “side input”
• Use cases
‒Enrich user events with known user data
‒Add geolocation information to geotagged events



© 2018 data Artisans18

Blueprint: Enriching data with “side input”

windowed
aggregation

write to 
Elastic

alert real 
humans

kafka filter enrich



© 2018 data Artisans19

Blueprint: Enriching data with “side input”

windowed
aggregation

write to 
Elastic

alert real 
humans

kafka filter enrich



© 2018 data Artisans20

Blueprint: Enriching data with “side input”

windowed
aggregation

write to 
Elastic

alert real 
humans

kafka filter enrich

Naïve approach synchronous access to 
external data store for 
every element



© 2018 data Artisans21

Blueprint: Enriching data with “side input”

windowed
aggregation

write to 
Elastic

alert real 
humans

kafka filter enrich

Slightly better approach asynchronous access 
to external data store 
for every element



© 2018 data Artisans22

Blueprint: Enriching data with “side input”

windowed
aggregation

write to 
Elastic

alert real 
humans

kafka filter enrich

“Next-level” approach

keep the enrichment 
data in Flink state itselfchangelog 

input



© 2018 data Artisans23

Blueprint: Enriching data with “side input”

• Regular user functions/operations
• Async I/O operation for more efficient data store accesses
• Two-input operations and stateful operations

Flink features to look at.



© 2018 data Artisans24

Blueprint: Dynamic processing 

• Use cases
‒Update of processing rules via DSL, think dynamic fraud-

detection rules/policies
‒Live-update of machine learning models



© 2018 data Artisans25

Blueprint: Dynamic processing 

pre-
processing

dynamic 
processing

rules
input

broadcast
stream

broadcast 
state

event
input more processing



© 2018 data Artisans26

Blueprint: Dynamic processing

• ProcessFunction
• Broadcast streams and broadcast state

Flink features to look at.



© 2018 data Artisans27

Closing



© 2018 data Artisans28

Learnings
• For immediate results you probably need a stream processor

• Start thinking in terms of data flows and reusable operations

• Getting state fault-tolerance, and event-time right is tough, check 
what your stream processor has as answers for those questions

• Flink has your use cases covered 





Thank you!
aljoscha@apache.org
kkloudas@apache.org
@dataArtisans
@ApacheFlink

We are hiring!
data-artisans.com/careers

mailto:aljoscha@apache.org


© 2018 data Artisans31

Hardened at scale

Streaming Platform Service
billions messages per day

A lot of Stream SQL

Streaming Platform as a Service
3700+ container running Flink,

1400+ nodes, 22k+ cores, 100s of jobs,
3 trillion events / day, 20 TB state

Fraud detection
Streaming Analytics Platform

1000s jobs, 100.000s cores, 
10 TBs state, metrics, analytics,

real time ML,
Streaming SQL as a platform



© 2018 data Artisans32

Powered by Apache Flink


