
Apache Lucene and Java 9+
Opportunities and Challenges

for Apache Solr and Elasticsearch

Uwe Schindler
SD DataSolutions GmbH / Apache Software Foundation

thetaph1 – https://www.thetaphi.de



My Background
• Committer and PMC member of Apache Lucene and Solr - main focus is on 

development of Lucene Core.
• Implemented fast numerical search and maintaining the new attribute-based text 

analysis API. Well known as Generics and Sophisticated Backwards Compatibility 
👮.

• Elasticsearch lover.
• Working as consultant and software architect at SD DataSolutions GmbH in 

Bremen, Germany.
• Maintaining PANGAEA (Data Publisher for Earth & Environmental Science) where I 

implemented the portal's geo-spatial retrieval functions with Apache Lucene Core 
and Elasticsearch.



What is this talk about?

• History of Java 9 and Apache Lucene/Solr

• Migration and testing your with Java 9’s 
module system (Jigsaw)

• Common pitfalls with Java 7 / Java 8 code, 

that just used to work

• Performance?



History

Oracle & Apache Lucene



Remember 2011?



Chronology:

Friday, July 29, 2011 

6



Chronology:

Friday, July 29, 2011 

6



Chronology:

Friday, July 29, 2011 

6



Chronology:

Friday, July 29, 2011 

6



Chronology:

Friday, July 29, 2011 

6



Chronology:

Friday, July 29, 2011 

6



Reaction

Oracle (Rory O’Donnell) contacted Lucene PMC.

Weekly preview builds.

Other Open Source projects started to test with 
preview builds of Java 8 – and later Java 9.

Easy and fast bug reporting!





Java 9 and Apache Lucene

Going forward...





What changed in Jigsaw?
(module system)

• Strong encapsulation:

– Code only sees classes from packages 
exported to your code

– Private APIs are private – especially those in 
the JDK!

• Your code behaves as if it will be executed 

with a security manager! ☺



What else is wrong with Jigsaw?

#ReflectiveAccessToNonExportedTypes

#AwkwardStrongEncapsulation

• New since build 148 of Java 9

• Prevents reflective access to any class 
from Java runtime



What else is wrong with Jigsaw?

#ReflectiveAccessToNonExportedTypes

#AwkwardStrongEncapsulation

• New since build 148 of Java 9

• Prevents reflective access to any class 
from Java runtime

#AwkwardStrongEncapsulation: A non-public element of 

an exported package can still be accessed via the 
AccessibleObject::setAccessible method of the 

core reflection API. The only way to strongly encapsulate 

such an element is to move it to a non-exported package. 

This makes it awkward, at best, to encapsulate the internals 

of a package that defines a public API.



What else is wrong with Jigsaw?

#ReflectiveAccessToNonExportedTypes

#AwkwardStrongEncapsulation

• New since build 148 of Java 9

• Prevents reflective access to any class 
from Java runtime



Undocumented APIs?

Unsafe, Byte Buffers & Co.





https://issues.apache.org/jira/browse/LUCENE-6989

https://bugs.openjdk.java.net/browse/JDK-4724038

https://issues.apache.org/jira/browse/LUCENE-6989
https://bugs.openjdk.java.net/browse/JDK-4724038










Unsafe got a new 

method!?







Other Changes

Compact Strings & Co.



Compact Strings

Java 9 internally stores strings in compact form, 
if they only contain ISO-8859-1 characters



Indyfied String Concat

"Hallo " + 123 + ' ' + object +

" is a concatted string";

• Java 1.0 to 1.8: a chain of StringBuilder.appends()
• Java 9: Invokedynamic with StringConcatFactory:

String concat(String,int,char,Object,String)



Just a funny detail...



Just a funny detail...



Hotspot Changes

Performance





Intrinsics

java.util.Objects / java.util.Arrays

classes:

• Bounds checks
• Array comparisons (signed / unsigned)
• Array differences



Know this type of code?



Know this type of code?



Solution: Multi-Release JAR (JEP 238)

• Lucene adds plain Java implementations of 
java.util.Objects and java.util.Arrays to own 
codebase (with exact same signatures)

• After compilation all class files are “patched” to use Java 9 
signatures and stored in separate folder

• Builds MR-JAR with:
– unmodified Java 8-compatible classes
– Patched classes with Java 9 signatures in extra folder



Solution: Multi-Release JAR (JEP 238)

• Lucene adds plain Java implementations of 
java.util.Objects and java.util.Arrays to own 
codebase (with exact same signatures)

• After compilation all class files are “patched” to use Java 9 
signatures and stored in separate folder

• Builds MR-JAR with:
– unmodified Java 8-compatible classes
– Patched classes with Java 9 signatures in extra folder



Solution: Multi-Release JAR (JEP 238)

• Lucene adds plain Java implementations of 
java.util.Objects and java.util.Arrays to own 
codebase (with exact same signatures)

• After compilation all class files are “patched” to use Java 9 
signatures and stored in separate folder

• Builds MR-JAR with:
– unmodified Java 8-compatible classes
– Patched classes with Java 9 signatures in extra folder



Solution: Multi-Release JAR (JEP 238)

• Lucene adds plain Java implementations of 
java.util.Objects and java.util.Arrays to own 
codebase (with exact same signatures)

• After compilation all class files are “patched” to use Java 9 
signatures and stored in separate folder

• Builds MR-JAR with:
– unmodified Java 8-compatible classes
– Patched classes with Java 9 signatures in extra folder



Garbage Collector!

G1GC



New Default Garbage Collector

• G1GC is now the default
– Previously it was ParallelGC
– No need to care in most cases, as Solr / 

Elasticsearch use a hardcoded default

• CMS collector deprecated!
– Warning on start of process!
– Migrate to G1GC?



New Default Garbage Collector

• G1GC is now the default
– Previously it was ParallelGC
– No need to care in most cases, as Solr / 

Elasticsearch use a hardcoded default

• CMS collector deprecated!
– Warning on start of process!
– Migrate to G1GC?

$ java -XX:+UseConcMarkSweepGC

Java HotSpot(TM) 64-Bit Server VM 

warning: Option UseConcMarkSweepGC was 

deprecated in version 9.0 and will likely 

be removed in a future release.



New Default Garbage Collector

• G1GC is now the default
– Previously it was ParallelGC
– No need to care in most cases, as Solr / 

Elasticsearch use a hardcoded default

• CMS collector deprecated!
– Warning on start of process!
– Migrate to G1GC?



Why update your cluster
to Java 9 or 10 ?

Improvements?





More security also without SecurityManager:

No risk of bad plugins hacking Java internals!



• Slightly improved performance for some 
queries!

• With Lucene/Solr 7.3+ (LUCENE-7966):
– Compression of large blobs during indexing 

(Elasticsearch JSON “_source”)
– Sorting against docvalues with 
MMapDirectory



Support?

The future



Java 11

• Release will be in September 2018
• Long Term Support (LTS) by Oracle
• Most people will use this version

– Java 9 and Java 10 are short-living
– Ubuntu 18.04 will use Java 10 as default, but 

switch to Java 11 in September (including LTS 
support)



Java 8 / 9 / 10 / 11

• After September 2018, no more (Oracle) Java 
9 or 10 releases

• Java 8 has still LTS support till January 2019 
(by Oracle)

• Ubuntu has LTS support for Java 8 and 10/11
• Redhat may package tar.gz files of Oracle 7, 

8, 9, 10, 11 for much longer time!



Summary: Lucene / Solr

• Minimum version stays at Java 8
• Full runtime support for Java 9 starting with 

Lucene/Solr 7.0
• Speed improvements by MR-JAR usage after 

Lucene/Solr 7.3
• Solr: Support for Java 10+ since Solr 7.3 

(startup scripts were broken)



Thank you!

Questions?


