
New Replica Types

Tomás Fernández Löbbe (tflobbe@…)



Agenda
Scaling Solr pre 4.0 

SolrCloud 

Why Replica Types? 

Replica Types Added 

Master/Slave in SolrCloud 

How to use Replica Types 

TODOs and future work



Scaling Solr pre 4.0



Scaling Solr pre 4.0

Master

Slave

Updates

Queries
R

eplication



Scaling Solr pre 4.0

Solr is built on top of Lucene 

Lucene writes segments to disk as new documents are added 

Lucene writes once. Files do not change once they are flushed to disk 

A background thread merges segments



Solr segment file replication works by incrementally downloading new 
segments from master server 

Not NRT (does not support “softCommits”)

Master

Scaling Solr pre 4.0

Seg1 Seg2

Slave

Seg1 Seg2Seg3



Scaling Solr pre 4.0

Master Slave

Seg3Seg3Seg1 Seg2 Seg1 Seg2

\

Solr segment file replication works by incrementally downloading new 
segments from master server 

Not NRT (does not support “softCommits”)



Scaling Solr pre 4.0

Master

Slave Slave Slave

If master server goes down, writes to the shard will fail. Search would still 
work



SolrCloud



SolrCloud

The set of features and capabilities of Solr to support: 

Distributed indexing and searching 

Automatic load balancing for queries 

Central configuration 

Node discovery



Scaling with SolrCloud

One replica per shard is elected to be leader 

Leader versions the update, applies it locally and forwards it to the replicas 

Every update is sent to all replicas of a shard 

If a replica fails a response, it needs to recover



Scaling with SolrCloud
LeaderUser Replica1 Replica2

Add Doc1

Add Doc1
Add Doc1 Add Doc1

Add Doc1 Add Doc1



Scaling with SolrCloud

In addition to the Lucene index, each replica keeps a transaction log 

Contains at least the updates made since the last commit. 

Required in the recovery process (in addition to RealTime Gets)



Scaling with SolrCloud

Replicas that miss updates (or new replicas added to the shard) need to 
recover from the leader 

While on RECOVERY state, replicas don’t serve query traffic



Scaling with SolrCloud
LeaderUser Replica1 Replica2

Add Doc1

Add Doc1
Add Doc1 Add Doc1

Add Doc1

Recover



Scaling with SolrCloud
LeaderReplica

PeerSync
Last N docs

Start buffering

commit
replication

Replay buffer

segments



Why replica types?



Why replica types?

In Master/Slave architecture, updates and queries are sent to different 
nodes, so the resources used by one process don’t affect the other 
process. 

An expensive query doesn’t affect update throughput 

An expensive document update/segment merge doesn’t affect query 
throughput 

This was not possible in SolrCloud mode



Why replica types?

Some use cases are OK with serving slightly out of date data



Why replica types?

Leader Initiated Recovery can become a problem



Why replica types?

In clusters with many replicas per shard, making every replica index, 
commit and merge can be wasteful 

On a 3 node shard, each update is sent to 3 replicas and indexed 3 times 

On a 50 node shard, each update is sent to 50 replicas and indexed 50 
times



Why replica types?

In high indexing throughput the transaction log sync process has little 
chance of succeeding 

In high indexing throughput the number of segment files to copy from the 
leader grows 

If there was a leader change, a full index replication may be needed



Why replica types?
Node A (Leader)

SegA1 SegA2

Node B

SegB1 SegB2

SegB3

Node C (RECOVERY)

SegC1



Why replica types?

SegB1 SegB2

SegB3

Full Index Recovery issue in SolrCloud

SegA1 SegA2SegA2

SegC1

SegA1

Node A (Leader) Node B

Node C (RECOVERY)



Why replica types?

SegA1 SegA2 SegB1 SegB2

SegB3

SegA1 SegA2

Node A (Leader) Node B

Node C

Full Index Recovery issue in SolrCloud



Node A (Leader)

Why replica types?

SegA1 SegA2 SegB1 SegB2

SegB3

SegA1 SegA2

SegB1 SegB2

SegB3

Full Index Recovery issue in SolrCloud
Node B (Leader)

Node C (RECOVERY)



Replica types added



Replica Types Added

NRT - Near Real Time 

TLOG - Transaction Log 

PULL - …Pulls indices only



NRT Replicas

The only existing type until 7.0 and the default type 

The only type of replica that supports Near-RealTime (softCommits) 

For every document, NRT replicas update it’s index and transaction log 

Any NRT replica of the shard can become leader 

The only type of replica that supports RealTime Get

LeaderUser NRT Replica

Add Doc1

Index Doc1

Add Doc1
Update tlog with Doc 1

Index Doc1
Update tlog with 

Doc 1



TLOG Replicas

For every document, TLOG replicas update it’s transaction log but 
not the index* 

A TLOG replica that is a shard leader WILL update it’s index (will 
behave like a NRT type) 

Periodically replicate segment files from shard leader 

Any TLOG replica can become leader, by first reproducing it’s 
transaction log

LeaderUser TLOG Replica

Add Doc1

Index Doc1

Add Doc1
Update tlog with Doc 1

Update tlog with 
Doc 1

Replicate
Replicate



PULL Replicas

PULL replicas are not contacted by the leader for document updates 

Periodically replicate segment files from shard leader 

Can’t become leaders. A shard with only PULL replicas will be leaderless

LeaderUser PULL Replica

Add Doc1

Index Doc1

Update tlog with Doc 1

Replicate

Replicate



PULL Replicas
PULL replicas can’t be in LIR,  because are not contacted by the leader for 
document updates 

They can be out of date, for a long time if they can’t talk with the leader

Leader PULL 
Replica

ZooKeeper



NRT TLOG PULL

Writes Index YES NO* NO

Writes Transaction 
Log YES YES NO

Receives every 
update YES YES NO

Replicates 
periodically NO YES YES

Replica Types Summary
What do they do?



Add Doc1

Node A (TLOG - Leader)

Index

Transaction Log

Index

Transaction Log

Node B (TLOG)

Node C (PULL)

Index

Replica Types Summary
What do they do?



NRT TLOG PULL

Supports Soft 
Commits (NRT) YES NO NO

Supports RealTime 
Get YES NO* NO

Can become leader YES YES NO

Can be in LIR YES YES NO

Replica Types Summary
Supported features



When creating a collection (or a shard), users can now 
choose how many replicas of each type they want, however 
only some combination of replica types are recommended



Combination of replica types in 
clusters
Replica Type 
combination When to use?

All NRT
*  This is the default configuration and the only combination before 7.0 
* Use always when Near-Real-Time is needed 
* Small to medium size clusters, or with low to medium indexing throughput

All TLOG
*  Near-Real-Time is not needed. 
* High update throughput 
* Medium to large clusters, but want all replicas to have all documents always

TLOG + PULL
* Near-Real-Time is not needed 
* High update throughput 
* Medium to large clusters, prefer availability of search over updates



Easier Recovery
Node A (TLOG - Leader)

SegA1 SegA2

Node B (TLOG)

Node C (TLOG/PULL - RECOVERY)

SegA1 SegA2



Easier Recovery

SegA1 SegA2 SegA1 SegA2

TLOG and PULL replicas share segments

SegA1 SegA2

Node A (TLOG - Leader) Node B (TLOG)

Node C (TLOG/PULL - RECOVERY)



Node A (TLOG - Leader)

SegA1 SegA2

SegA1 SegA2

SegA1 SegA2

SegB3SegB3

Easier Recovery
TLOG and PULL replicas share segments

Node B (TLOG - Leader)

Node C (TLOG/PULL - RECOVERY)



SegA1 SegA2

SegA1 SegA2

SegA1 SegA2

SegB3SegB3 SegB3

Node A (TLOG - Leader)

Node C (TLOG/PULL - RECOVERY)

Easier Recovery
TLOG and PULL replicas share segments

Node B (TLOG - Leader)



Combination of replica types in clusters

If two or more nodes in the cluster write their own indices, any change of 
leadership between them will cause all TLOG and PULL replicas to require 
all the new index!



Node A (NRT - Leader)

SegA1 SegA2

Node B (NRT)

SegB1 SegB2

SegB3

Nodes C  - Z (PULL or TLOG)

SegA1 SegA2

Combination of replica types in clusters
Not Recommended - Mix NRT with TLOG or PULL



Node A (NRT - Leader)

SegA1 SegA2 SegB1 SegB2

SegB3

SegA1 SegA2

SegB1 SegB2

SegB3

Node B (NRT - Leader)

Nodes C  - Z (PULL or TLOG)

Combination of replica types in clusters
Not Recommended - Mix NRT with TLOG or PULL



Combination of replica types in clusters

PULL replicas can’t be leaders. A shard with only PULL replicas is a 
leaderless shard



Master/Slave in SolrCloud



TLOG 
(Leader)

PULL PULL PULL

Updates

Queries



TLOG 
(Leader)

PULL PULL PULL

Updates

Queries

TLOG TLOG



TLOG 
(Leader)

PULL PULL PULL

Updates

TLOG 
(Leader) TLOG

Queries



What does this mean?

Prefer availability of search queries over document updates and NRT (no 
LIR) 

Separation of responsibilities. Updates can go to some replicas while 
queries will go to others*



What does this mean?
High availability of writes 

Load balancing of query traffic and updates 

Collections API 

CloudSolrClient support 

Node discovery 

…



Multiple shards or collections

Can use Autoscaling rules if you want to separate responsibilities for the 
whole node



How to use Replica Types



How to use Replica Types
V1: 

/admin/collections?action=CREATE…&nrtReplicas=X&tlogReplicas=Y&pullReplicas=Z 

/admin/collections?action=ADDREPLICA…&type=[nrt/tlog/pull] 

V2: 

POST "http://host:port/v2/collections" -d ‘{create:{…
nrtReplicas=X,tlogReplicas=Y,pullReplicas=Z}}’ 

POST "http://host:port/v2/collections/myCollection/shards" -d ‘{add-replica:{…,type:[NRT/
TLOG/PULL]}}’



How to use Replica Types



Autoscaling policy framework

{"replica":"1", "shard":"#ANY" ,"port":8983, "type":"NRT"} 

{"replica":"1", "shard":"#ANY" ,"port":7574, "type":"PULL"} 

{"replica":"1", "shard":"#ANY" ,"port":7573, "type":"TLOG"}



Identifying types of replicas
… 

"shards":{"shard1":{ 

        "range":"80000000-7fffffff", 

        “state":"active", 

        "replicas":{ 

          "core_node3":{ 

            "core":"myCollection_shard1_replica_t1", 

            "base_url":"http://10.0.0.108:7574/solr", 

            "node_name":"10.0.0.108:7574_solr", 

            "state":"active", 

            "type":"TLOG"}, 

…



Identifying types of replicas

INFO [c:myCollection s:shard1 r:core_node8 x:myCollection_shard1_replica_t1] o.a.s.h.IndexFetcher; Master's generation: 1 

INFO [c:myCollection s:shard1 r:core_node8 x:myCollection_shard1_replica_t1] o.a.s.h.IndexFetcher; Master's version: 0 

…



Identifying types of replicas

https://issues.apache.org/jira/browse/SOLR-11578



Preferring some types over others for 
queries

/select?q=*:*&shards.preference=replica.type:PULL



Filtering types that can be used

/select?q=*:*&shards.filter=replica.type:PULL?https://issues.apache.org/jira/browse/SOLR-10880

https://issues.apache.org/jira/browse/SOLR-10880


TODOs and future work



TODOs and future work
How old is my data? SOLR-10775 

Replication doesn’t always need to be from the shard leader 

Integration with CLI - SOLR-10772 

Replica types preference for single shard collections: SOLR-12217 

Allowing mixing NRT with PULL/TLOG 

NRT Replication



Thanks!


