
Writing a Distributed Ray
Tracer with Apache Beam,
Abridged
Robert Burke (@lostluck) Berlin Buzzwords 2019

Learning Goals
● What is…

○ a Ray Tracer?
○ Apache Beam?

● Why you'd want to write one
with the other

What is a Ray
Tracer?

● Simulates the physics of Light
to generate images

● Does it backwards
● Can achieve subtle and

complex effects

What is a Ray
Tracer?

● Simulates the physics of Light
to generate images

● Does it backwards
● Can achieve subtle and

complex effects

What is a Ray
Tracer?

● Simulates the physics of Light
to generate images

● Does it backwards
● Can achieve subtle and

complex effects

What is a Ray
Tracer?

● Simulates the physics of Light
to generate images

● Does it backwards
● Can achieve subtle and

complex effects

What is a Ray
Tracer?

● Simulates the physics of Light
to generate images

● Does it backwards
● Can achieve subtle and

complex effects

What is a Ray
Tracer?

● Simulates the physics of Light
to generate images

● Does it backwards
● Can achieve subtle and

complex effects

A Ray is cast

Additional rays are cast

Further Additional rays are cast

Further Additional rays are cast

The Ray Tracing Algorithm

● Read in the scene and it’s configuration options
● Set up the camera
● For each pixel:

○ Cast sampling rays from the camera to the scene
○ Find the object in the scene the ray intersects with
○ Depending on the properties of the object

■ Cast additional sampling rays to determine the color of
the object
● These can be called “bounces”

■ Stop when we hit the bounce limit
○ Accumulate the contribution from all sampling rays
○ Set the pixel color

● Save the image

Apache Beam

Apache Beam

Apache Beam Go SDK

func main() {
 beam.Init()

 p, s := beam.NewPipelineWithRoot()
 foos := foo.Source(s, foo.DefaultConfig())
 barCounts := beam.ParDo(s, barCountsFn, foos)
 barTotals := stats.SumPerKey(s, barCounts)
 barOutput := beam.ParDo(s, &formatFn{}, barTotals)
 textio.Write(s, *output, barOutput)

 if err:= beamx.Run(context.Background(), p); err != nil {
 log.Exitf(“pipeline failed: %v”, err)
 }
}

Model

beam.NewPipeline()

beam.ParDo(...)

beam.CoGroupByKey(...)

beam.Combine(...)

beam.Flatten(...)

PCollections and Elements

var myPCol beam.PCollection

type Threshold float64

type Pixel struct {
 X, Y int
}

type Vec struct {
 X, Y, Z float64
}

type Ray struct {
 Px Pixel
 Id int
 Dir, Origin Vec
}

ParDo & DoFns

func getBarCountsFn(in Foo) (string, int) {
 return in.Key, len(in.B)
}

barCounts := beam.ParDo(s, getBarCountsFn, foos)
Titles := beam.ParDo(s, strings.Title, names)

type filterFn struct {
 Min int
}

func (fn *filterFn) ProcessElement(in Foo, emit func(string, int)) {
 l := len(in.B)
 if l < fn.Min {
 emit(in.Key, l)
)
}

filterCounts := beam.ParDo(s, &filterFn{Min: 42}, foos)

Side Inputs

func exclude(v int, bounds func(*int) bool, high, mid, low func(string)) {
 ...
}

func exclude(v int, bounds []int, high, mid, low func(string)) {
 ...
}

highs, lows, mids := beam.ParDo3(s, exclude, importantValuesPCol, beam.SideInput{boundsPCol})

CoGroupByKey

func joinFooBar(k string, fooIter func(*Foo) bool, barIter func(*Bar) bool) (string, int) {
 ...
}

grouped := beam.CoGroupByKey(s, keyedFoos, keyedBars)
summed := beam.ParDo(s, joinFooBar, grouped)

Combines

func sum(a,b int) int {
 return a + b
}

summed := beam.CombinePerKey(s, sum, myKeyedInts)

type cbnFn struct {
 …
}

func (fn *cbnFn) AddInput(a Accum, i Foo) Accum { … }

func (fn *cbnFn) MergeAccumulators(a Accum, b Accum)
 Accum { … }

func (fn *cbnFn) ExtractOutput(a Accum) Bar { … }

combinedBar := beam.Combine(s, &cbnFn{…}, myKeyedInts)

The Ray Tracing Algorithm

● Read Scene files & assemble Scene
● Set up camera
● For each pixel:

○ Trace sample rays
■ Intersect objects with ray
■ Trace “bounce” rays if needed

○ Accumulate color from rays

● Set pixel color
● Save Image

Saving an Image

Generating Rays

Generating the Scene

Tracing Rays

Tracing Rays

The Resulting Pipeline

The Problem

type Ray struct {
 Xp,Yp,Zp float64 // Position
 Xv,Yv,Zv float64 // Vector
 Rc,Gc,Bc float64 // Color

 Xpx,Ypx int32 // Pixel
 Bounce, ID int16 // SampleID
}

The Problem

The Problem

Art by @ashleymcnamara, “this is fine” by KC Greene, Gophers by Renee French

A Solution

Future Work

A Better Solution

Danke!

[Danke]

Mathematics!

