Quantmetry Data Science Consulting

Project use case

Improve your marketing reach using large scale machine learning on Spark

Matthieu Vautrot <u>mvautrot@quantmetry.com</u> Nina Bertrand nbertrand@quantmetry.com

June, 6th

Quantmetry – Data science consulting

Quantmetry Data Science Consulting

- Founded in 2011
- 25 consultants Data Scientists & engineers
- @bertrand_nina
- @matthieuvautrot

Why are we talking today ?

Share of experience of an on-going project

• Our client, a insurance and bank ...

... frequently build and run Marketing Campaigns to sell their products

Can you do better than just "scoring" approaches with "Big Data" ?

The client's new campaign

- Goal of the campaign : "Bancarize" as much Insurance clients as possible
- Can use multiple canals for it :

• Display (web adds through DMP and / or client web site tagging)

Email

Existent data organization

A same Hadoop Cluster, 2 distinct tenants (usual legal stuff)

Of course we can !!

Can we really do better than regular scoring?

A typical scoring campaign is generally built like that :

- Train predictive **model** on the client base : observed buyers of the product (or similar)
- Apply the model and score the whole eligible client data base
- Send to the **N top score** a marketing message

Observed scoring approach limitations

Two major limitations to this approach :

• Lack of personalisation : Same message is sent to the top scored group

• Scoop natural noise : Target who would buy the product anyway

When one message is not enough

Two major limitations to this approach :

- Lack of personalisation : Same message is sent to the top scored group
 -> Use multiple messages and find out who likes which one with ML
- Scoop natural noise : Target who would buy the product anyway

Test & learn on the client data base

Test & learn the different messages directly from the insurance client data base

• At day 0 : random client sample / random message

• At day 0 : random client sample / random message

• At day 0 : random client sample / random message

• At day 0 : random client sample / random message

- At day 0 : random client sample / random message
- At day N+1 : use N days results from learning

Can we really do better than scoring?

Two major limitations to this approach :

- Lack of personalisation : Same message is sent to the top scored group
 -> Use Multiple messages and find out who likes which one with ML
- Scoop natural noise : Target who would buy the product anyway

Let's get rid off the natural noise

Two major limitations to this approach :

- Lack of personalisation : Same message is sent to the top scored group
 -> Use multiple messages and find out who likes which one with ML
- Scoop natural noise : Target who would buy the product anyway
 -> Use ML models that get rid off natural noise : uplift models

Uplift model : improve an effect treatment *Uplift (or « True lift »)*

Idea

✓ Describe message effect on target

Motivation

- Do not call self-converted-people
- Some customers are liable to buy but marketing phone call have a negative influence on them

Uplift model : improve an effect treatment

did not receive the

Implementation

Methodology:

Two samples should be regarded : .

Different possible implementations :

- Independent models ۲
- Regression with tuning parameters ۲
- Sequential models ۲

Uplift model : improve an effect treatment Implementation choice

Methodology :

• Two samples should be regarded :

Different possible implementations :

- Independent models
- Regression with tuning parameters
- Sequential models

Number of models : N messages X M canal

Every day :

- One predictive model is calculated for every Message X Canal
- Models as usual : random forest or logistic regression

Uplift model : improve an effect treatment Implementation choice

Methodology :

• Two samples should be regarded :

Different possible implementations :

- Independent models:
- Regression with tuning parameters
- Sequential models

S the subscription event

Uplift model : improve an effect treatment Main difficulty

Uplift(x) =
$$P(S | x, T=1) - P(S | x, T=0)$$

Difficulty:

There is a predicted uplift by customer but no individual real uplift → no individual target..

Solution :

- Sort customers by their uplift score in decreasing order
- Focus on quantile of customers
- Calculate difference between conversion rate of treated group and natural conversion rate

Uplift model : improve an effect treatment *Appetence VS Uplift*

Appetence sorted by conversion probability

- Groups with highest conversion score has not necessarily been scored with the highest uplift.
- This people may have converted without any treatment.

Uplift model : improve an effect treatment

Appetence VS Uplift

Uplift model sorted by predicted uplift

- … What about the real uplift?
- How do you assess the performance ?

Actual state of the implementation

Need POC

- Quick agile POC iterations
- Limited to 2 messages to push

For all 3 canals

- Data preparation (Pig Hive) done
- Predictive Algorithms : done

Actual state of the implementation

Need POC

- Quick agile POC iterations
- Limited to 2 messages to push

For all 3 canals

- Data preparation (Pig Hive) done
- Predictive Algorithms : done
- 2 waves already achieved in mail and tel
- DMP results analysis is on going

Uplift model : improve an effect treatment Use case observed uplift and marketing insights

Observed uplift : for mail canal after 1rst wave

We just have to take best score between the 2 models

Feedback and pitfalls

Data engineering the Marketing campaign

- Easy on paper but watch out to business and IT organization constraints (eg : DMP and Hadoop Cluster not easly linkable)
- Spark is good but sometimes Scikit learn can do the trick for first quicker ML iteration

• Very efficient for marketing insight already on first waves -> Promising for the following up of the project !

Quantmetry Data Science Consulting

Q&A?

Thank you

Nina Bertrand : nbertrand@quantmetry.com

Matthieu Vautrot : mvautrot@quantmetry.com