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We are hiring !

New products
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Agenda

1. Big Data Benchmarking
a. State of the art

b. NEXMark: A benchmark over continuous data streams

2. Apache Beam and Nexmark
a. Introducing Beam

b. Advantages of using Beam for benchmarking

c. Implementation

d. Nexmark + Beam: a win-win story

3. Using Nexmark
a. Neutral benchmarking: a difficult issue

b. Example: Running Nexmark on Apache Spark

4. Current status and future work
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Big Data Benchmarking



Benchmarking

Why do we benchmark?
1. Performance
2. Correctness

Benchmark suites steps:
1. Generate data
2. Compute data
3. Measure performance
4. Validate results

Types of benchmarks
● Microbenchmarks
● Functional
● Business case
● Data Mining / Machine Learning
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Issues of Benchmarking Suites for Big Data

● No de-facto suite: Terasort, TPCx-HS (Hadoop), HiBench, ...

● No common model/API: Strongly tied to each processing engine or SQL

● Too focused on Hadoop infrastructure

● Mixed benchmarks for storage/processing

● Few benchmarking suites focus on streaming semantics
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State of the art

Batch

● Terasoft: Sort random data
● TPCx-HS: Sort to measure Hadoop compatible distributions
● TPC-DS on Spark: TPC-DS business case with Spark SQL
● Berkeley Big Data Benchmark: SQL-like queries on Hive, Redshift, Impala
● HiBench* and BigBench

Streaming

● Yahoo Streaming Benchmark

* HiBench includes also some streaming / windowing benchmarks
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http://sortbenchmark.org/
http://sortbenchmark.org/
http://www.tpc.org/tpcx-hs/
http://www.tpc.org/tpcx-hs/
http://www.tpc.org/tpcx-hs/
https://github.com/databricks/spark-sql-perf
https://github.com/databricks/spark-sql-perf
https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/
https://github.com/intel-hadoop/HiBench
https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench
https://github.com/intel-hadoop/HiBench
https://github.com/yahoo/streaming-benchmarks
https://github.com/yahoo/streaming-benchmarks


NEXMark

Benchmark for queries over data streams
Online Auction System
Research paper draft 2004
8 CQL-like queries

Example:
Query 4: What is the average selling price for each auction category?

Query 8: Who has entered the system and created an auction in the last period?

Auction

Person
Seller

Person
Bidder

Person
Bidder

Bid
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Nexmark on Google Dataflow

● Port of the queries from the NEXMark research paper

● Enriched suite with client use cases

● Used as a rich integration test scenario
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Apache Beam and Nexmark



Apache Beam origin

MapReduce

BigTable DremelColossus

FlumeMegastoreSpanner

PubSub

Millwheel
Apache 
Beam

Google Cloud 
Dataflow
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Apache Beam is a unified 
programming model 
designed to provide 
efficient and portable data 
processing pipelines

What is Apache Beam?

13



Apache Beam vision

Beam Model: Fn Runners

Apache 
Flink

Apache 
Spark

Beam Model: Pipeline Construction

Other
LanguagesBeam Java

Beam 
Python

Execution Execution

Cloud 
Dataflow

Execution

Batch + strEAM Unified model

What / Where / When / How

1. SDKs: Java, Python, Go (WIP), etc

2. DSLs & Libraries: Scio (Scala), SQL 

(WIP)

3. IOs: Data store Sources / Sinks

4. Runners for existing Distributed 

Processing Engines
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Runners

Google Cloud 
Dataflow

Apache FlinkApache Spark Apache Apex

Ali Baba JStormApache Gearpump

Apache Beam
Direct Runner

Apache Storm

WIP

Runners “translate” the code into the target runtime

* Same code, different runners & runtimes
15



The Beam Model: What is Being Computed?

16
Event Time: Timestamp when the event happened

Processing Time: Absolute program time (wall clock) 



The Beam Model: Where in Event Time?

Event Time

Processing 
Time 12:0212:00 12:1012:0812:0612:04

12:0212:00 12:1012:0812:0612:04

Input

Output
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● Split infinite data into finite chunks



The Beam Model: Where in Event Time?
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The Beam Model: When in Processing Time?



Apache Beam Pipeline concepts

Data processing Pipeline
(executed by a Beam runner)

PTransform PTransform
Read 

(Source)
Write
(Sink)

Input
PCollection

Window per min Count Output

20
* Don't think it is only a straight pipeline any directed acyclic graph (DAG) is valid.



GroupByKey
CoGroupByKey

Combine -> Reduce
Sum
Count
Min / Max
Mean
...

ParDo -> DoFn
MapElements
FlatMapElements
Filter

WithKeys
Keys
Values

Windowing/Triggers

Windows
FixedWindows
GlobalWindows
SlidingWindows
Sessions

Triggers
AfterWatermark
AfterProcessingTime
Repeatedly

...

Element-wise Grouping

Apache Beam - Programming Model
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Nexmark on Apache Beam

● Nexmark was ported from Dataflow to Beam 0.2.0 as an integration test case
● Refactored to the just released stable version of Beam 2.0.0
● Made code generic to support all the Beam runners
● Changed some queries to use new APIs
● Validated queries in all the runners to test their support of the Beam model
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Advantages of using Beam for benchmarking

● Rich model: all use cases that we had could be expressed using Beam API

● Can test both batch and streaming modes with exactly the same code

● Multiple runners: queries can be executed on Beam supported runners* 

● Metrics

23
* Runners must provide the specific capabilities (features) used by the query
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Implementation



Components of Nexmark

● NexmarkLauncher: 
Start sources to generate Events
Run and monitor the queries (pipelines)

● Generator:
Timestamped and correlated events:
Auction, Bid, Person

● Metrics:
Each query includes ParDos to update metrics:
execution time, processing event rate, number of results,
but also invalid auctions/bids, …

● Configuration*:
Batch: test data is finite and uses a BoundedSource

Streaming: test data is finite but uses an UnboundedSource

25
* Configuration details discussed later



Interesting Queries
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Query Description Beam concepts

3 Who is selling in particular US states? Join, State, Timer

5 Which auctions have seen the most bids in the last period? Sliding Window, Combiners

6 What is the average selling price per seller for their last 10 
closed auctions?

Global Window, Custom 
Combiner

7 What are the highest bids per period? Fixed Windows, Side Input

9 * What are the winning bids for each closed auction? Custom Window

11 * How many bids did a user make in each session he was active? Session Window, Triggering

12 * How many bids does a user make within a fixed processing 
time limit?

Global Window in Processing 
Time

*: not in the original NEXMark paper



Query Structure
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1. Get PCollection<Event> as input

2. Apply ParDo + Filter to extract object of interest: Bids, Auction, Person

3. Apply transforms: Filter, Count, GroupByKey, Window, etc.

4. Apply ParDo to output the final PCollection: collection of AuctionPrice, AuctionCount ...



Key point: Where in time to compute data?
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● Windows: divide data into event-time-based finite chunks.
○ Often required when doing aggregations over unbounded data

                             



Triggers: Condition to emit the results of aggregation
Deal with producing early results or including late-arriving data

● Q11: uses a data-driven trigger fires when 20 elements were received

                            

Key point: When to compute data?

29
* Triggers can be Event-time, Processing-Time, Data-driven or Composite



● Q12: Processing-time trigger fired when first element is received + delay
(works in processing  in global window time to create a duration)

● Processing time: wall clock absolute program time

● Event time: timestamp in which the event occurred

                             

Key point: When to compute data?

30
Default trigger: at the end of the window (Event-time)



Key point: How to temporarily group events?

● Custom window function (in Q9)
○ CoGroupByKey is per window, need to put bids and auctions 

in the same window before joining them.
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● State and Timer APIs in an incremental join (Q3):
○ Memorize person event waiting for corresponding auctions and clear at timer

○ Memorize auction events waiting for corresponding person event

Key point: How to deal with out of order events?
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Conclusion on queries

● Wide coverage of the Beam API
○ Most of the API 
○ Illustrates also working in processing time

● Realistic
○ Real use cases, valid queries for an end user auction system

● Complex queries
○ Leverage all the runners capabilities
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Why Nexmark on Beam? A win-win story

● Advanced streaming semantics
● A/B testing of execution engines (e.g. regression and performance comparison 

between 2 versions of the same engine or of the same runner, ...) 
● Integration tests (SDK with runners, runners with engines, …)
● Validate Beam runners capability matrix

34

https://beam.apache.org/documentation/runners/capability-matrix/
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Using Nexmark



Neutral Benchmarking: A difficult issue

● Different levels of support of capabilities of the Beam model among runners
● All execution systems have different strengths: we would end up comparing 

things that are not always comparable
○ Some runners were designed to be batch oriented, others stream oriented
○ Some are designed towards sub-second latency, others prioritize auto-scaling

● Runners / Systems can have multiple knobs to tweak the options
● Benchmarking on a distributed environment can be inconsistent.

Even worse if you benchmark on the cloud (e.g. Noisy neighbors)
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Nexmark - How to run

$ mvn exec:java -Dexec.mainClass=org.apache.beam.integration.nexmark.Main -Pflink-runner 

-Dexec.args="--runner=FlinkRunner --suite=SMOKE --streaming=true --manageResources=false 

--monitorJobs=true --flinkMaster=tbd-bench"

37

$ spark-submit --master yarn-client --class org.apache.beam.integration.nexmark.Main 

--driver-memory 512m --executor-memory 512m --executor-cores 1 

/home/imejia/beam-integration-java-nexmark-bundled-2.1.0-SNAPSHOT.jar 

--runner=SparkRunner --query=5 --streamTimeout=60 --streaming=true 

--manageResources=false

$ mvn exec:java -Dexec.mainClass=org.apache.beam.integration.nexmark.Main -Pspark-runner 

-Dexec.args="--runner=SparkRunner --suite=SMOKE --streaming=false 

--manageResources=false --monitorJobs=true --sparkMaster=local"



Windows
● size 10s
● sliding period 5s
● watermark hold for 0s 

Proportions: 
● Hot Auctions = ½ 
● Hot Bidders =¼ 
● Hot Sellers=¼

Technical
● Artificial CPU load
● Artificial IO load

Benchmark workload configuration

Events generation
smoke config defaults

● 100 000 events generated
● 100 generator threads
● Event rate in SIN curve
● Initial event rate of 10 000
● Event rate step of 10 000
● 100 concurrent auctions 
● 1000 concurrent persons bidding / creating 

auctions
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  Conf  Runtime(sec)                Events(/sec)                     Results

  0000           3.8                     26267.4                      100000              

  0001           3.5                     28232.6                       92000              

  0002           3.6                     27964.2                         713        

  0003           7.5                     13253.8                         580

  0004          10.0                     10006.0                          50

  0005           5.8                     17214.7                           3

  0006           9.4                     10642.8                        1631  

  0007           7.4                     13539.1                           1 

  0000           7.2                     13861.9                        6000

  0009           9.5                     10517.5                        5243     

  0010           5.9                     16877.6                           1     

  0011           5.8                     17388.3                        1992     

  0012           5.5                     18181.8                        1992    

Nexmark Output - Spark Runner (Batch)
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Nexmark Output - Spark Runner (Streaming)
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  Conf  Runtime(sec)                Events(/sec)                     Results

  0000           1.0                     10256.1                      100000

  0001           1.3                      7722.1                       92000

  0002           0.7                     14705.8                         713     

  0003             0                         0.0                           0

  0004          17.3                      5779.7                          50

  0005          16.6                      6020.8                           3

  0006          26.5                      3773.4                        1631    

  0007             0                         0.0                           0

  0008          12.3                      8142.0                        6000     

  0009          17.7                      5650.0                        5243    

  0010          13.1                       768.8                           1       

  0011          10.0                      9962.1                        1992     

  0012          10.2                      9783.8                        1992    



Comparing different versions of the Spark engine
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Current status and future work



Execution Matrix
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Batch

Streaming

* Apex runner lacks support for metrics
⋅⋅ We have not tested yet on Google Dataflow



Current status
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● Manage Nexmark issues in a dedicated place.

● Pending issues will be migrated to upstream



Current status
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● Nexmark helped discover bugs and missing features in Beam

● 10 open issues / 7 closed issues on Beam upstream. BEAM-160

● Nexmark PR is reviewed, and LGTM It must be merged into master for Beam 2.1.0

https://issues.apache.org/jira/browse/BEAM-160


Future work

● Resolve open Nexmark and Beam issues
● Integrate Nexmark into the Integration tests of Beam
● Add more queries to evaluate corner cases
● Validate new runners: Gearpump, Storm, JStorm
● Streaming SQL-based queries (using the ongoing work on Calcite DSL)
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Contribute

You are welcome to contribute!

● 5 open Github issues and 9 Beam Jiras that need to be taken care of
● Improve documentation + more refactoring
● New ideas, more queries, support for IOs, etc

Not only for Nexmark, Beam is in a perfect shape to jump in.
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Greetings

● Mark Shields (Google): Contributing Nexmark + answering our questions
● Etienne Chauchot (Talend): Co-maintainer of Nexmark
● Thomas Groh, Kenneth Knowles (Google): Direct runner + State/Timer API
● Amit Sela, Aviem Zur (Paypal): Spark Runner + Metrics
● Aljoscha Krettek (data Artisans), Jinsong Lee (Ali Baba): Flink Runner
● Jean-Baptiste Onofre, Abbass Marouni (Talend): comments and help to run 

Nexmark in our YARN cluster
● The rest of the Beam community in general for being awesome.
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* The nice slides with animations were created by Tyler Akidau and Frances Perry and used with authorization.

https://beam.apache.org/contribute/presentation-materials/
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http://datalab.cs.pdx.edu/niagara/NEXMark/
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