
1

Nexmark: Using Apache Beam to
create a unified benchmarking suite

Ismaël Mejía
@iemejia

Integration Software
Big Data / Real-Time
Open Source
Enterprise

Who are we?

2

We are hiring !

New products

3

Agenda

1. Big Data Benchmarking
a. State of the art

b. NEXMark: A benchmark over continuous data streams

2. Apache Beam and Nexmark
a. Introducing Beam

b. Advantages of using Beam for benchmarking

c. Implementation

d. Nexmark + Beam: a win-win story

3. Using Nexmark
a. Neutral benchmarking: a difficult issue

b. Example: Running Nexmark on Apache Spark

4. Current status and future work

4

5

Big Data Benchmarking

Benchmarking

Why do we benchmark?
1. Performance
2. Correctness

Benchmark suites steps:
1. Generate data
2. Compute data
3. Measure performance
4. Validate results

Types of benchmarks
● Microbenchmarks
● Functional
● Business case
● Data Mining / Machine Learning

6

Issues of Benchmarking Suites for Big Data

● No de-facto suite: Terasort, TPCx-HS (Hadoop), HiBench, ...

● No common model/API: Strongly tied to each processing engine or SQL

● Too focused on Hadoop infrastructure

● Mixed benchmarks for storage/processing

● Few benchmarking suites focus on streaming semantics

7

State of the art

Batch

● Terasoft: Sort random data
● TPCx-HS: Sort to measure Hadoop compatible distributions
● TPC-DS on Spark: TPC-DS business case with Spark SQL
● Berkeley Big Data Benchmark: SQL-like queries on Hive, Redshift, Impala
● HiBench* and BigBench

Streaming

● Yahoo Streaming Benchmark

* HiBench includes also some streaming / windowing benchmarks
8

http://sortbenchmark.org/
http://sortbenchmark.org/
http://www.tpc.org/tpcx-hs/
http://www.tpc.org/tpcx-hs/
http://www.tpc.org/tpcx-hs/
https://github.com/databricks/spark-sql-perf
https://github.com/databricks/spark-sql-perf
https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/
https://github.com/intel-hadoop/HiBench
https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench
https://github.com/intel-hadoop/HiBench
https://github.com/yahoo/streaming-benchmarks
https://github.com/yahoo/streaming-benchmarks

NEXMark

Benchmark for queries over data streams
Online Auction System
Research paper draft 2004
8 CQL-like queries

Example:
Query 4: What is the average selling price for each auction category?

Query 8: Who has entered the system and created an auction in the last period?

Auction

Person
Seller

Person
Bidder

Person
Bidder

Bid

9

Item

Nexmark on Google Dataflow

● Port of the queries from the NEXMark research paper

● Enriched suite with client use cases

● Used as a rich integration test scenario

10

11

Apache Beam and Nexmark

Apache Beam origin

MapReduce

BigTable DremelColossus

FlumeMegastoreSpanner

PubSub

Millwheel
Apache
Beam

Google Cloud
Dataflow

12

Apache Beam is a unified
programming model
designed to provide
efficient and portable data
processing pipelines

What is Apache Beam?

13

Apache Beam vision

Beam Model: Fn Runners

Apache
Flink

Apache
Spark

Beam Model: Pipeline Construction

Other
LanguagesBeam Java

Beam
Python

Execution Execution

Cloud
Dataflow

Execution

Batch + strEAM Unified model

What / Where / When / How

1. SDKs: Java, Python, Go (WIP), etc

2. DSLs & Libraries: Scio (Scala), SQL

(WIP)

3. IOs: Data store Sources / Sinks

4. Runners for existing Distributed

Processing Engines

14

Runners

Google Cloud
Dataflow

Apache FlinkApache Spark Apache Apex

Ali Baba JStormApache Gearpump

Apache Beam
Direct Runner

Apache Storm

WIP

Runners “translate” the code into the target runtime

* Same code, different runners & runtimes
15

The Beam Model: What is Being Computed?

16
Event Time: Timestamp when the event happened

Processing Time: Absolute program time (wall clock)

The Beam Model: Where in Event Time?

Event Time

Processing
Time 12:0212:00 12:1012:0812:0612:04

12:0212:00 12:1012:0812:0612:04

Input

Output

17

● Split infinite data into finite chunks

The Beam Model: Where in Event Time?

18

The Beam Model: When in Processing Time?

Apache Beam Pipeline concepts

Data processing Pipeline
(executed by a Beam runner)

PTransform PTransform
Read

(Source)
Write
(Sink)

Input
PCollection

Window per min Count Output

20
* Don't think it is only a straight pipeline any directed acyclic graph (DAG) is valid.

GroupByKey
CoGroupByKey

Combine -> Reduce
Sum
Count
Min / Max
Mean
...

ParDo -> DoFn
MapElements
FlatMapElements
Filter

WithKeys
Keys
Values

Windowing/Triggers

Windows
FixedWindows
GlobalWindows
SlidingWindows
Sessions

Triggers
AfterWatermark
AfterProcessingTime
Repeatedly

...

Element-wise Grouping

Apache Beam - Programming Model

21

Nexmark on Apache Beam

● Nexmark was ported from Dataflow to Beam 0.2.0 as an integration test case
● Refactored to the just released stable version of Beam 2.0.0
● Made code generic to support all the Beam runners
● Changed some queries to use new APIs
● Validated queries in all the runners to test their support of the Beam model

22

Advantages of using Beam for benchmarking

● Rich model: all use cases that we had could be expressed using Beam API

● Can test both batch and streaming modes with exactly the same code

● Multiple runners: queries can be executed on Beam supported runners*

● Metrics

23
* Runners must provide the specific capabilities (features) used by the query

24

Implementation

Components of Nexmark

● NexmarkLauncher:
Start sources to generate Events
Run and monitor the queries (pipelines)

● Generator:
Timestamped and correlated events:
Auction, Bid, Person

● Metrics:
Each query includes ParDos to update metrics:
execution time, processing event rate, number of results,
but also invalid auctions/bids, …

● Configuration*:
Batch: test data is finite and uses a BoundedSource

Streaming: test data is finite but uses an UnboundedSource

25
* Configuration details discussed later

Interesting Queries

26

Query Description Beam concepts

3 Who is selling in particular US states? Join, State, Timer

5 Which auctions have seen the most bids in the last period? Sliding Window, Combiners

6 What is the average selling price per seller for their last 10
closed auctions?

Global Window, Custom
Combiner

7 What are the highest bids per period? Fixed Windows, Side Input

9 * What are the winning bids for each closed auction? Custom Window

11 * How many bids did a user make in each session he was active? Session Window, Triggering

12 * How many bids does a user make within a fixed processing
time limit?

Global Window in Processing
Time

*: not in the original NEXMark paper

Query Structure

27

1. Get PCollection<Event> as input

2. Apply ParDo + Filter to extract object of interest: Bids, Auction, Person

3. Apply transforms: Filter, Count, GroupByKey, Window, etc.

4. Apply ParDo to output the final PCollection: collection of AuctionPrice, AuctionCount ...

Key point: Where in time to compute data?

28

● Windows: divide data into event-time-based finite chunks.
○ Often required when doing aggregations over unbounded data

Triggers: Condition to emit the results of aggregation
Deal with producing early results or including late-arriving data

● Q11: uses a data-driven trigger fires when 20 elements were received

Key point: When to compute data?

29
* Triggers can be Event-time, Processing-Time, Data-driven or Composite

● Q12: Processing-time trigger fired when first element is received + delay
(works in processing in global window time to create a duration)

● Processing time: wall clock absolute program time

● Event time: timestamp in which the event occurred

Key point: When to compute data?

30
Default trigger: at the end of the window (Event-time)

Key point: How to temporarily group events?

● Custom window function (in Q9)
○ CoGroupByKey is per window, need to put bids and auctions

in the same window before joining them.

31

● State and Timer APIs in an incremental join (Q3):
○ Memorize person event waiting for corresponding auctions and clear at timer

○ Memorize auction events waiting for corresponding person event

Key point: How to deal with out of order events?

32

Conclusion on queries

● Wide coverage of the Beam API
○ Most of the API
○ Illustrates also working in processing time

● Realistic
○ Real use cases, valid queries for an end user auction system

● Complex queries
○ Leverage all the runners capabilities

33

Why Nexmark on Beam? A win-win story

● Advanced streaming semantics
● A/B testing of execution engines (e.g. regression and performance comparison

between 2 versions of the same engine or of the same runner, ...)
● Integration tests (SDK with runners, runners with engines, …)
● Validate Beam runners capability matrix

34

https://beam.apache.org/documentation/runners/capability-matrix/

35

Using Nexmark

Neutral Benchmarking: A difficult issue

● Different levels of support of capabilities of the Beam model among runners
● All execution systems have different strengths: we would end up comparing

things that are not always comparable
○ Some runners were designed to be batch oriented, others stream oriented
○ Some are designed towards sub-second latency, others prioritize auto-scaling

● Runners / Systems can have multiple knobs to tweak the options
● Benchmarking on a distributed environment can be inconsistent.

Even worse if you benchmark on the cloud (e.g. Noisy neighbors)

36

Nexmark - How to run

$ mvn exec:java -Dexec.mainClass=org.apache.beam.integration.nexmark.Main -Pflink-runner

-Dexec.args="--runner=FlinkRunner --suite=SMOKE --streaming=true --manageResources=false

--monitorJobs=true --flinkMaster=tbd-bench"

37

$ spark-submit --master yarn-client --class org.apache.beam.integration.nexmark.Main

--driver-memory 512m --executor-memory 512m --executor-cores 1

/home/imejia/beam-integration-java-nexmark-bundled-2.1.0-SNAPSHOT.jar

--runner=SparkRunner --query=5 --streamTimeout=60 --streaming=true

--manageResources=false

$ mvn exec:java -Dexec.mainClass=org.apache.beam.integration.nexmark.Main -Pspark-runner

-Dexec.args="--runner=SparkRunner --suite=SMOKE --streaming=false

--manageResources=false --monitorJobs=true --sparkMaster=local"

Windows
● size 10s
● sliding period 5s
● watermark hold for 0s

Proportions:
● Hot Auctions = ½
● Hot Bidders =¼
● Hot Sellers=¼

Technical
● Artificial CPU load
● Artificial IO load

Benchmark workload configuration

Events generation
smoke config defaults

● 100 000 events generated
● 100 generator threads
● Event rate in SIN curve
● Initial event rate of 10 000
● Event rate step of 10 000
● 100 concurrent auctions
● 1000 concurrent persons bidding / creating

auctions

38

 Conf Runtime(sec) Events(/sec) Results

 0000 3.8 26267.4 100000

 0001 3.5 28232.6 92000

 0002 3.6 27964.2 713

 0003 7.5 13253.8 580

 0004 10.0 10006.0 50

 0005 5.8 17214.7 3

 0006 9.4 10642.8 1631

 0007 7.4 13539.1 1

 0000 7.2 13861.9 6000

 0009 9.5 10517.5 5243

 0010 5.9 16877.6 1

 0011 5.8 17388.3 1992

 0012 5.5 18181.8 1992

Nexmark Output - Spark Runner (Batch)

39

Nexmark Output - Spark Runner (Streaming)

40

 Conf Runtime(sec) Events(/sec) Results

 0000 1.0 10256.1 100000

 0001 1.3 7722.1 92000

 0002 0.7 14705.8 713

 0003 0 0.0 0

 0004 17.3 5779.7 50

 0005 16.6 6020.8 3

 0006 26.5 3773.4 1631

 0007 0 0.0 0

 0008 12.3 8142.0 6000

 0009 17.7 5650.0 5243

 0010 13.1 768.8 1

 0011 10.0 9962.1 1992

 0012 10.2 9783.8 1992

Comparing different versions of the Spark engine

41

42

Current status and future work

Execution Matrix

43

Batch

Streaming

* Apex runner lacks support for metrics
⋅⋅ We have not tested yet on Google Dataflow

Current status

44

● Manage Nexmark issues in a dedicated place.

● Pending issues will be migrated to upstream

Current status

45

● Nexmark helped discover bugs and missing features in Beam

● 10 open issues / 7 closed issues on Beam upstream. BEAM-160

● Nexmark PR is reviewed, and LGTM It must be merged into master for Beam 2.1.0

https://issues.apache.org/jira/browse/BEAM-160

Future work

● Resolve open Nexmark and Beam issues
● Integrate Nexmark into the Integration tests of Beam
● Add more queries to evaluate corner cases
● Validate new runners: Gearpump, Storm, JStorm
● Streaming SQL-based queries (using the ongoing work on Calcite DSL)

46

Contribute

You are welcome to contribute!

● 5 open Github issues and 9 Beam Jiras that need to be taken care of
● Improve documentation + more refactoring
● New ideas, more queries, support for IOs, etc

Not only for Nexmark, Beam is in a perfect shape to jump in.

47

Greetings

● Mark Shields (Google): Contributing Nexmark + answering our questions
● Etienne Chauchot (Talend): Co-maintainer of Nexmark
● Thomas Groh, Kenneth Knowles (Google): Direct runner + State/Timer API
● Amit Sela, Aviem Zur (Paypal): Spark Runner + Metrics
● Aljoscha Krettek (data Artisans), Jinsong Lee (Ali Baba): Flink Runner
● Jean-Baptiste Onofre, Abbass Marouni (Talend): comments and help to run

Nexmark in our YARN cluster
● The rest of the Beam community in general for being awesome.

48
* The nice slides with animations were created by Tyler Akidau and Frances Perry and used with authorization.

https://beam.apache.org/contribute/presentation-materials/

References

Apache Beam
NEXMark
BEAM-160
Nexmark on Beam Issues
Big Data Benchmarks

49

http://datalab.cs.pdx.edu/niagara/NEXMark/
http://datalab.cs.pdx.edu/niagara/NEXMark/
http://datalab.cs.pdx.edu/niagara/NEXMark/
http://datalab.cs.pdx.edu/niagara/NEXMark/
https://issues.apache.org/jira/browse/BEAM-160
https://issues.apache.org/jira/browse/BEAM-160
https://github.com/iemejia/beam/issues
https://github.com/iemejia/beam/issues
https://github.com/iemejia/beam/issues
https://fr.slideshare.net/VenkataNagaRavi/big-data-benchmarking-45826933
https://fr.slideshare.net/VenkataNagaRavi/big-data-benchmarking-45826933

50

Thanks

