Percolator

Martijn van Groningen
@mvgroningen

elasticsearch.

* What is percolator?
» Use cases
» How does the percolator work?

e Percolator features

Add a document

http lverb index ty[)e id
curl —XPUT 'localhost:9200/my-index/my-type/1' -d '{
"title" : "Coffee percolator",
"body" : "A coffee percolator is a type of ..."

} |

elasticsearch.

and then search

http verb index search endpoint

l —

curl —XGET 'localhost:9200/my_index/_search' -d '{

"query" : {
"match" : { < type of query
"body" : "coffee"
T
1 field query string

elasticsearch.

and then search

{
"hits" : {
"total" : 3,
"max_score' : 0.4,
"hits" : [
{
" index" : "my_index"
Il_typell : Ilmy_typell
Il_idll : Illll’
" score" : 0.4
" source" : {
"title" : "Coffee percolator”,
"body" : "A coffee percolator 1is a..."
s
}
]
s
s

elasticsearch.

Now lets percolate!

elasticsearch.

Register a query

Reserved percolator type

\/
curl —-XPUT 'localhost:9200/my-index/.percolator/my-id' -d '{
"query" : { <«
"match" : {
"body" : “coffee"
s

} |

Reserved top level json object

elasticsearch.

Percolate a document

index containing

. type of document endpoint
queries \ l /

curl -XGET ‘localhost:9200/my—-index/my-type/_percolate' -d ‘{
Ildocll : _{

"title" : "Coffee percolator",

"body" : "A coffee percolator is a type of .."

The document being percolated

elasticsearch.

Percolate a document

"took" : 19,

" shards" : {
"total" : 2,
"successful" :2,
"failed" : 0

fi

"count" : 4, < total amount of matching queries
"matches" : |

{

"_index" : “my-index",
"_id" : Mmy_idn

A matching query
}

elasticsearch.

 Reversed search.

Storing queries instead of data.

Querying with data instead of queries.

* This works because queries and documents
are detfined as json documents.

Percolation in the wild

elasticsearch.

» Store and register queries that monitor data.

End users can define their alerts via application.

» Execute the percolate api right after indexing.

No need to wait - percolator works in realtime.

« Examples:

Price monitor, News alerts, Stock alerts, Weather alerts

Alerting use case

Registering a query via index api:

curl -XPUT ‘localhost:9200/alerts/.percolator/user-1' —-d '{

uqueryu : {
"bool" : {
must : [
{
"range" : {
"product.price" : { . .
"lte" : 500 < Price restriction
s
5
}
{
"match" : {
"product.name" : "my led tv" < name restriction
s
5
]
s
s

} |

elasticsearch.

Percolator - alerting use case

Index api:

curl —-XPUT 'localhost:9200/prices/price/1' -d '{
"product" : A
"name"” : "my led tv",
"price" : 499
I3
} |

elasticsearch.

We stored a new product,
now what?

elasticsearch.

Percolator - alerting use case

Percolate api:

curl —XPOST 'localhost:9200/alerts/price/_percolate' -d '{
"dOC" : {
"product" : A
"name" : "my led tv",
"price" : 499
I3
I3
}I

elasticsearch.

ok, sending the data twice...

elasticsearch.

Percolator - alerting use case

Index response:
1

"ok" : true,

" _index" : "prices"
"type" : price
"_id" : 1

"version" : 1

elasticsearch.

Percolator - alerting use case

» Percolate existing document api

Combination of the get and percolate api

index containing_ the new product product id

curl —XGET ‘localhost:9200/prices/price/1/_percolate?
percolate_index=alerts’

index containing the queries

elasticsearch.

» Store all users’ queries of a specific time frame

Last week’s, last month’s queries.

e Provide feedback to advertisement owner.

Execute percolate api while editing the ad.

« Examples:

Market places, web advertisements.

» Store queries that can identify patterns in your
documents.

* Percolate a document before indexing it.

Enrich the document with the queries it matches with.

» Examples:

Automatically tag documents, geo tag documents and
ways to automatically categorize documents.

Diving into the Percolator

elasticsearch.

» Each shard holds a collection of parsea
gueries in memory.

* The queries are also stored on the shard

(Lucene index)

» The collection of queries get updated by
every index, create, update or delete
operation in realtime.

» During percolating the document to be
percolated gets indexed into an in memory
index.

» All shard queries are executed against this one
document in memory index.

Shard level execution time is linear to the amount
queries to evaluate.

» After all queries have been evaluated the in
memory index gets cleaned up.

» Percolate api executes the request in parallel
on all shards.

 Use routing and multi tenancy to reduce the
amount of queries to evaluate.

- Routing will reduce the amount of shards.

- More indices (and therefore more shards) reduces the
amount of queries per shard.

Distributed execution

4 node1

/

node2

\
N
Y,
~_distribute
L pd J
0\0@
C
¢

elasticsearch.

Percolator

Multi tenancy:

curl —XGET 'localhost:9200/index1l,index2/my-type/ _percolate' -d '{

"dOC" : {
"title" : "Coffee percolator"”,
"body" : "A coffee percolator is a type of ..."
s
}I
Aliases:
curl -XGET 'localhost:9200/my-alias/my-type/_percolate' -d '{
||doc|| : {
"title" : "Coffee percolator",
"body" : "A coffee percolator is a type of ..."
I3

} 1

elasticsearch.

Percolator

Routing:
curl —XPUT 'localhost:9200/index/type/_percolate?routing=ab' -d '{
"dOC" : {
"title" : "Coffee percolator”,
"body" : "A coffee percolator is a type of ..."
I3

} |

elasticsearch.

Distributed execution with routing

4 node1)
4 N
1P 3R
_ J
_ J

-

node2

~

~N

1R

elasticsearch.

* The .percolator type is a hidden type.

* The search api omits .percolator typeac
documents from the response.

By default search api ignores percolator queries:
curl —XGET 'localhost:9200/index/ _search' -d '{

} |

Unless specitically specitied:
curl -XGET ‘localhost:9200/index/.percolator/_search’ -d '{

} |

» The percolator ignores the top query field.

Detault .percolator mapping:

1
"properties" : {
"query" :
"type" : “object",
"enabled" : false
s
s

» A percolator query is just a document!

That gets treated differently than a regular document.

 No restriction on other fields:

curl —-XPUT 'localhost:9200/my-index/.percolator/my-id"' -d '{

||query|| : {
"match" : {
"body" : “coffee"
I3
fr
"organization_id" : "xyz"

} i

Percolator metadata
« Metadata fields do get indexed.

and can be used in percolator features.

Percolator teature filtering:

curl —XGET 'localhost:9200/my-index/my—-type/ percolate' -d '{

"dOC" ; {

"title" : "Coffee percolator",

"body" : "A coffee percolator is a type of ..."
}
"filter" : {

"term" : {"organization_id" : “xyz"}

-

Only percolator queries with the specitied metadata will

evaluate the document being percolated. slasticsearch

 Percolating is CPU intensive.

Try to reduce the number of queries to be evaluated

* Let percolator queries co-exist in the same
index.

f the number of queries are small

» Dedicated percolator index.

Dedicated sharding configurations

Dedicated percolator nodes

Percolator features

elasticsearch.

Feature - count apl

Percolate count api:

curl -XPUT 'localhost:9200/my-index1l/my-type/_percolate/count' -d '{
"dOC" . _{
"title" : "Coffee percolator",
"body" : "A coffee percolator is a type of ..."
s
}I

Response:

{
"took" : 8,
" shards" : {
"total" : 2,
"successful" : 2,
"failed" : 0
frp

"count" : 5

elasticsearch.

Feature - tiltering

Filter by query:

curl -XGET 'localhost:9200/index/my—-type/_percolate/count' -d '{

"dOC" ; {

"title" : "Coffee percolator”,

"body" : "A coffee percolator 1is a type of .."
}
||query|| - {

"term" : {"click_id" : “43"}
}
} 1

elasticsearch.

* Build on top on the query support.

» Sorting based on percolator query fields.

Document being percolated isn’t scored!

* Three new options:

*size The amount of matches to return (required with sort)
*sort Whether to sort based on query.

e score Just include score, but don't sort

* Like the query / filter support not realtime.

Feature - sorting / scoring

curl -XGET 'localhost:9200/my—index/my-type/_percolate' -d '{
"dOC" ; {

¥

uery" :
"function _score" : {
"query" : { "match_all": {}},
"functions" : |
{
IIeXpII : {
"create_date" : {

"reference" : '"2014/05/26",
"scale" : "1000d"

s
I3
"sort" : true, "size" : 10

}_ i

elasticsearch.

Feature - sorting / scoring

{
"took": 2,
" shards": {
"total": 5,
"successful': 5,
"failed": 0
fir
"total": 2,
"matches": [
1
" _index": "my-index",
Il_idll: II2II’
" score'": 0.85559505
e
{
" index": "my-index",
Il_idll: II1II’
" score': 0.4002574
s
]
s

elasticsearch.

Feature - aggregations

« Aggregation support on query metadata:

curl —XGET 'localhost:9200/my-index/my—-type/ percolate' -d '{

"doc" : {
e
aggs : 1
"click_ids" : {
"terms" : {
"field" : "click id"
s
s
I3

} |

elasticsearch.

Feature - highlighting

Lets add two queries:

curl —XPUT 'localhost:9200/my-index/_percolator/1' -d '{

"query": {
"match" : {
"body" : "brown fox"
}
¥

} 1

curl —XPUT 'localhost:9200/my-index/_percolator/2' -d '{

"query": {
"match" : {
"body" : "lazy dog"
¥
I

} |

elasticsearch.

Feature - highlighting

curl -XGET 'localhost:9200/my—-index/my-type/percolate' -d '{

"dOC" : {

"body" : "The quick brown fox jumps over the lazy dog”
}
"highlight" : {

"fields" : {

"body" : {}

}
b
"size" : 5

} |

* The size option is required.

» All highlight options are supported.

elasticsearch.

Feature - highlighting

"total": 2,
"matches": |
{
" index": "my-index",
" id": "1",
"highlight": {
"body": |
"The quick brown fox jumps over the lazy dog"
]
5
}
{
" index": "my-index",
"oid": "2",
"highlight": {
"body": |
"The quick brown fox jumps over the lazy dog"
]
5
I3

elasticsearch.

X3

« Combine multiple percolate requests into a
single request

Request:

curl —XGET 'localhost:9200/_mpercolate' —--data-binary @requests.txt; echo

requests.txt:

{"percolate" : {"index" : "my-index", "type" : "my-tweet"}}

{"doc" : {"title" : "coffee percolator"}}

{"percolate" : "index" : "my-index", "type" : "my-type", "id" : "1"}
1r

{"count" : {"index" : "my-index", "type" : "my-type"}}

{"doc" : {"title" : "coffee percolator"}}

{"count" : "index" : "my-index", "type" : "my-type", "id" : "1"}

1r

elasticsearch.

