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Who Am I?

• Engineer #1 at  

• Responsible for many poor 
decisions and even a few 
good ones. 

• jhugg@voltdb.com 

• @johnhugg 

• http://chat.voltdb.com

mailto:jhugg@voltdb.com
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Beatlejuice App



Minimum Viable Product

• Alexa/Siri-ish device in your house 

• Sends discernible words to your servers 

• If it hears “beetlejuice” three times, play sound clips from the movie 

• Because everyone hates “Word Count”



“Just Use Postgres"

Dumbish Client
Running in IaaS or Datacenter

Audio

Play Sound

Rich Client 
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Speech to text 
Etc… 

Add record

Count records

Record Action 
& Reset Count



“Just Use Postgres"

CREATE TABLE BEETLECOUNT (
    user_id BIGINT NOT NULL,
    spoken_count INTEGER NOT NULL,
    PRIMARY KEY(user_id)
);



Storm?

Client Running in IaaS or Datacenter

?



Why Storm?

• Would I use Storm for pretty much anything now? No. 

• It’s decently exemplar, well known, and not fancy. 

• But there are soooo many other choices.
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Failure



Postgres Failure

Audio

Play Sound

• Postgres software or hardware stops

• Network fails
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Side Effects Ruin Everything
• Playing a sound on the speaker is not a transaction you can roll 

back. It’s an external action — A side effect. 

• Good examples are SMS or a REST-API call.

Use Idempotence with At-Least-Once 
delivery for Exactly Once Semantics



Does Kafka Fix Failure?



All better?

Audio

Play  
Sound

Rich Client 
Logic

• More robust to Postgres failure in some ways 
• Side effects can’t be helped much 
• Latency hit 
• But many good reasons to do this (coming up)



Commonalities: Stream & DB
• In order to ensure delivery, the original source has 

to be prepared to resend an event until 
acknowledged. 

• Idempotency is the key to exactly-once-semantics. 

• It’s impossible to guarantee a side effect happens 
exactly once.  
So we do our best. 

• Systems that are flexible/safe/accurate are really 
really hard.



What makes a “hard” app?

• Scale / Complexity 
• Velocity of requirements changes 
• Precision  

“exactly three times”  
Chaining precise conditions and actions  
Non-commutative math 

• Side Effects 
• Partial Control



Stream vs Database

2017 Edition

In the tradition of:Tabs vs Spaces andEmacs vs Vim
Javascript Floating Point vs Anything Resembling Sanityand comes:



Why Stream / Log?
• Can easily Tee (split into two identical streams) to prod and test, or to A/B test. 

• Often allows for simpler clients, as richer processing is moved into the 
streaming system. 

• Often easier to understand performance characteristics, especially under load. 

• By replaying a logged stream, can often roll-back/forward to any recent state.  
Need truncating snapshots for this. 

• Can sometimes make multi-DC easier and more consistent. 

• Horizontal scalability and fault tolerance often easier.



Why Database

• Truncating a stream requires compaction or a snapshot. This is hard 
to get right for many apps. 

• You can query it! 

• Secondary indexes, Materialized views, Constraints, Joins, FKs 

• The tooling is really mature. 

• Typically more appropriate for apps that require lower latency.



Use A Streaming System with a DB?

• Sometimes you can get a lot of the benefits of both 

• More integration points and more ways to fail.

BUT IT’S OK TO WANT IT ALL



You promised blurring…



Add Databaseness to Streaming

Counts for a partition of users

User Code

Probably terrible user glue code
Storm punts on this



User Code

Counts for users 
TABULAR!

Add Databaseness to Streaming

A library that handles much of the hard 
interactions between the stream (log) 

and tabular state

Client Logic Kafka Log
Kafka Log

Downstream 
Consumer

More Kafka Logs? Downstream 
Consumer

• Other systems have ways to integrate state with streams, but none 
seem as ambitious as Kafka Streams



Make a database  
that smells streamy



Put Processing in the DB

Rich Client 
Logic

Many 
RPC Calls

User logic in 
stored 

procedures

Simpler Client 
Logic

Fewer 

RPC Calls
Beyond Postgres:
• Better tools for managing user code. 
• Better tools for debugging. 
• Better monitoring and transparency 

for user code running in the DB.



Give the DB a A-Priori-Log

WAL

Client Logic

RPC CallsClient Logic

A-Priori Logical Log

RPC Responses

RPC Calls

Could do this as 

But an integrated product 
has many advantages.

+ +



Give the DB an A-Posteriori Log
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Give the DB an A-Posteriori Log
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Horizontally Partition the DB

Client 1 A-Priori Log A-Posteriori Log

A-Priori Log A-Posteriori Log

A-Priori Log A-Posteriori Log

Client 2
Consumer 1

Consumer 2
Client 3

Client 4



Throw out           but keep 

• Needs to present as a 
single, managed entity 

• Global stats 

• Global reads without extra 
work 

• SQL, JDBC, ODBC, etc… 

• Global writes? Maybe…



Throw out           but keep 

Because Latency



Where is this going?



We’re building a lot of this at

• Horizonitally partitioned, but acts as a single system 

• Per partition ordered input and ordered output  
All based on an a-priori logical log 

• Debuggable Java stored procedures that can use 3rd party libs 

• Ability to emit events into an a-posteriori log 

• Native support for secondary indexes, ranking, materialized views, 
transactions, cross-partition operations, JDBC/ODBC, etc…



Conclusion
• Note: VoltDB is a not as general as we 

would like yet. 

• The future of operations and OLTP is 
going to be a mix of streams, logs and 
state. 
We are getting good at these things 
individually. 

• Let’s build systems that tackle integration 
and the in-between problems. 
There’s an opportunity here.
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Thank You!
• Please ask me questions now or later. 

• Feedback on what was interesting, 
helpful, confusing, boring is ALWAYS 
welcome. 

• Happy to talk about:  
   Data management  
   Systems software dev  
   Distributed systems 
   Japanese preschools

BS

Stuff I Don't Know

Stuff I Know

T H I S  TA L K


