
The History and Future of the Blurring of

Stream Processing & OLTP

John Hugg
June 12th, 2017

@johnhugg
jhugg@voltdb.com

mailto:jhugg@voltdb.com

Who Am I?

• Engineer #1 at

• Responsible for many poor
decisions and even a few
good ones.

• jhugg@voltdb.com

• @johnhugg

• http://chat.voltdb.com

mailto:jhugg@voltdb.com
http://chat.voltdb.com

Beatlejuice App

Minimum Viable Product

• Alexa/Siri-ish device in your house

• Sends discernible words to your servers

• If it hears “beetlejuice” three times, play sound clips from the movie

• Because everyone hates “Word Count”

“Just Use Postgres"

Dumbish Client
Running in IaaS or Datacenter

Audio

Play Sound

Rich Client
Logic

Speech to text
Etc…

Add record

Count records

Record Action
& Reset Count

“Just Use Postgres"

CREATE TABLE BEETLECOUNT (
 user_id BIGINT NOT NULL,
 spoken_count INTEGER NOT NULL,
 PRIMARY KEY(user_id)
);

Storm?

Client Running in IaaS or Datacenter

?

Why Storm?

• Would I use Storm for pretty much anything now? No.

• It’s decently exemplar, well known, and not fancy.

• But there are soooo many other choices.

Storm

Client

Audio

Instructions to play sound Sometimes…

Counts for a
partition of users

User
Code

Counts for a
partition of users

User
Code

Counts for a
partition of users

User
Code

Failure

Postgres Failure

Audio

Play Sound

• Postgres software or hardware stops

• Network fails

Storm

Client

Audio

Instructions to play sound Sometimes…

Counts for a
partition of users

User
Code

Counts for a
partition of users

User
Code

Counts for a
partition of users

User
Code

Side Effects Ruin Everything
• Playing a sound on the speaker is not a transaction you can roll

back. It’s an external action — A side effect.

• Good examples are SMS or a REST-API call.

Use Idempotence with At-Least-Once
delivery for Exactly Once Semantics

Does Kafka Fix Failure?

All better?

Audio

Play
Sound

Rich Client
Logic

• More robust to Postgres failure in some ways
• Side effects can’t be helped much
• Latency hit
• But many good reasons to do this (coming up)

Commonalities: Stream & DB
• In order to ensure delivery, the original source has

to be prepared to resend an event until
acknowledged.

• Idempotency is the key to exactly-once-semantics.

• It’s impossible to guarantee a side effect happens
exactly once.  
So we do our best.

• Systems that are flexible/safe/accurate are really
really hard.

What makes a “hard” app?

• Scale / Complexity
• Velocity of requirements changes
• Precision  

“exactly three times”  
Chaining precise conditions and actions  
Non-commutative math

• Side Effects
• Partial Control

Stream vs Database

2017 Edition

In the tradition of:Tabs vs Spaces andEmacs vs Vim
Javascript Floating Point vs Anything Resembling Sanityand comes:

Why Stream / Log?
• Can easily Tee (split into two identical streams) to prod and test, or to A/B test.

• Often allows for simpler clients, as richer processing is moved into the
streaming system.

• Often easier to understand performance characteristics, especially under load.

• By replaying a logged stream, can often roll-back/forward to any recent state.  
Need truncating snapshots for this.

• Can sometimes make multi-DC easier and more consistent.

• Horizontal scalability and fault tolerance often easier.

Why Database

• Truncating a stream requires compaction or a snapshot. This is hard
to get right for many apps.

• You can query it!

• Secondary indexes, Materialized views, Constraints, Joins, FKs

• The tooling is really mature.

• Typically more appropriate for apps that require lower latency.

Use A Streaming System with a DB?

• Sometimes you can get a lot of the benefits of both

• More integration points and more ways to fail.

BUT IT’S OK TO WANT IT ALL

You promised blurring…

Add Databaseness to Streaming

Counts for a partition of users

User Code

Probably terrible user glue code
Storm punts on this

User Code

Counts for users
TABULAR!

Add Databaseness to Streaming

A library that handles much of the hard
interactions between the stream (log)

and tabular state

Client Logic Kafka Log
Kafka Log

Downstream
Consumer

More Kafka Logs? Downstream
Consumer

• Other systems have ways to integrate state with streams, but none
seem as ambitious as Kafka Streams

Make a database
that smells streamy

Put Processing in the DB

Rich Client
Logic

Many
RPC Calls

User logic in
stored

procedures

Simpler Client
Logic

Fewer

RPC Calls
Beyond Postgres:
• Better tools for managing user code.
• Better tools for debugging.
• Better monitoring and transparency

for user code running in the DB.

Give the DB a A-Priori-Log

WAL

Client Logic

RPC CallsClient Logic

A-Priori Logical Log

RPC Responses

RPC Calls

Could do this as

But an integrated product
has many advantages.

+ +

Give the DB an A-Posteriori Log

RPC CallsClient Logic

A-Priori Logical Log

RPC Responses

RPC CallsClient Logic

A-Priori Logical Log

RPC Responses

A-Posteriori Log

Downstream
Consumer

Emited Events

Give the DB an A-Posteriori Log

RPC CallsClient Logic

A-Priori Logical Log

RPC Responses

A-Posteriori Log

Downstream
Consumer

Emited Events

RPC CallsClient Logic

A-Priori Logical Log

Consume Event

A-Posteriori Log

Emited Events

Horizontally Partition the DB

Client 1 A-Priori Log A-Posteriori Log

A-Priori Log A-Posteriori Log

A-Priori Log A-Posteriori Log

Client 2
Consumer 1

Consumer 2
Client 3

Client 4

Throw out but keep

• Needs to present as a
single, managed entity

• Global stats

• Global reads without extra
work

• SQL, JDBC, ODBC, etc…

• Global writes? Maybe…

Throw out but keep

Because Latency

Where is this going?

We’re building a lot of this at

• Horizonitally partitioned, but acts as a single system

• Per partition ordered input and ordered output  
All based on an a-priori logical log

• Debuggable Java stored procedures that can use 3rd party libs

• Ability to emit events into an a-posteriori log

• Native support for secondary indexes, ranking, materialized views,
transactions, cross-partition operations, JDBC/ODBC, etc…

Conclusion
• Note: VoltDB is a not as general as we

would like yet.

• The future of operations and OLTP is
going to be a mix of streams, logs and
state. 
We are getting good at these things
individually.

• Let’s build systems that tackle integration
and the in-between problems. 
There’s an opportunity here.

chat.voltdb.com

jhugg
@voltdb.com

@johnhugg
@voltdb

Thank You!
• Please ask me questions now or later.

• Feedback on what was interesting,
helpful, confusing, boring is ALWAYS
welcome.

• Happy to talk about:  
 Data management  
 Systems software dev  
 Distributed systems 
 Japanese preschools

BS

Stuff I Don't Know

Stuff I Know

T H I S TA L K

