in
b 35

N

—— 2 | Y X \ o = 1} onp e U B - b
L= — WLV ¢ . e L

- L
3\

= e

=y s Te—

L S S

(€ca==
I ‘Am‘ i

(L
Tﬁf ¥

K

.

m_
Y

e

,_. '

n S
]
-

.«««'

AGENDA

» Introduction
» Definitions
» History

» Comparison
» Post-Legacy
» Pre-Legacy

» Wrap up

Gebraucht. Gepruft. Gekauft

www.hey.car

N
W)

4 HE Y CAR

* Engineering Manager at hey.car

* From Novo Hamburgo - Brazil

* Cycling/IMechKeyboards/etc

Gregorio Kusowski

Definitions

DEFINITIONS - LEGACY

Jonas Salk

DEFINITIONS - LEGACY

LEGACY SYSTEM

1. Outdated

2. Not so modern architecture, language, libraries or
frameworks

3. "it works"™ *

*usually

DEFINITIONS - LEGACY

LEGACY SYSTEM - EXAMPLES

1. Your bank that still uses COBOL
2. That cron that runs daily and nobody wants to
touch

3. That old website you did, that uses jQuery

DEFINITIONS - LEGACY

LEGACY SYSTEM - EXAMPLES

1. This new microservice, written in Swift, relies on
Kafka, and is working so well you will not touch it
in a couple years?

2. The SQL script | wrote two weeks ago to fix a
problem because | don't know how to fix the
issue, and | need to run every day?

3. My new microfrontend architecture?

DEFINITIONS - BUZZWORD

BUZZWORD /bazwe:d/

a word or phrase,

often an item of jargon,
that is fashionable at

a particular time

or in a particular context

DEFINITIONS - BUZZWORD

BUZZWORD

Peak of Inflated
Expectations

Plateau of
Productivity

Expectations

Innovation Trough of
Trigger Disillusionment

Time

https://www.gartner.com/en/research/methodologies/gartner-hype-cycle

https://www.gartner.com/en/research/methodologies/gartner-hype-cycle

DEFINITIONS - BUZZWORD

HYPES AND KEYWORDS

React: virtual DOM, functional, components

TDD is Dead

Microservices: scalability, coupling, monolith
NoSQL: scalability, bigdata, high performance
Elixir: distributed, high performance, fault tolerant

s OWODNH

https://blog.daftcode.pl/hype-driven-development-34691c2¢9b22

https://www.gartner.com/en/research/methodologies/gartner-hype-cycle

HISTORY - Al WINTER

Al WINTER

Turing Test

LISP Machines

High Expectation

Low/No return

First Al Winter - 1974 - 1980
Second Al Winter - 1987 - 1993

vV vV VvV VvV Vv V9

Comparison

COMPARISON

LEGACIES OUT THERE

1. Art: Van Gogh, Michelangelo, ...

2. Music: Bethoven, Bach, ...

3. Architecture: Niemeyer, ...

4. Computer Science: Ada Lovelace, Turing, ...

S. Software Engineering: Kent Beck, Martin Fowler, ...

COMPARISON

‘ Jeremy Ashkenas & ()
Follow v
@jashkenas

“Write open source software”, they said.

“It will be fun”, they said.

— " . \ °‘|‘\. .U: y - g
. } '._ ' W\ \‘ ‘
\" 0\ AD LN W |‘tl 4 | “‘o‘ ‘ /| .6 :
L x M) 4+ 5 e oy '
w R

e

COMPARISON

27 likes

artyom.miskaryan | dived into your god damn
"language"” just like that. The only difference, it

was a pure shit. Wish you and my project owner
hot days in hell.

2h Reply

HOW PEOPLE ARE ON THE INTERNET

= THE WORK OF

THERE'SNO
|
bt ED FOR THAT.

E WORK OF THAT GUY
HOUGH I DONIT LIKE

https://twitter.com/annapawlicka/status/709978859005988864 I1=1= 04

https://twitter.com/annapawlicka/status/709978859005988864

COMPARISON

LEGACY SYSTEM - EXAMPLES

1. This new microservice, written in Swift, relies on
Kafka, and is working so well you will not touch it
in a couple years?

2. The SQL script | wrote two weeks ago to fix a
problem because | don't know how to fix the
issue, and | need to run every day?

3. My new microfrontend architecture?

WHAT HAPPENS WHEN REQUIREMENTS
ARE ADDED OR CHANGED?

COMPARISON

Marie Kondo

COMPARISON

OTHER INDUSTRIES

W=

Are you replacing your car when you get a flat tire?

What do we do if there is a crack in basement?

What your dentist says if you have a dental issue?

Your cholesterol is too high. Let's replace
everything!

COMPARISON

OTHER INDUSTRIES

Are you replacing your car when you get a flat tire?

What do we do if there is a crack in basement?

What your dentist says if you have a dental issue?

Your cholesterol is too high. Let's replace
everything!

W=

WE ARE JUST TOO YOUNG
AS INDUSTRY

Post-Legacy

POST-LEGACY

MOBILE APPLICATION CASE

1. Java 1.2

2.
3.
4.
.
6.

Proprietary Framework

No Application Marketplace support
Compiles to iOS, Android and other platforms
Provides a new Ul kit

Targeting B2B

40%

32%

24%

16%

8%

0%

POST-LEGACY

MOBILE APPLICATION CASE

StatCounter Global Stats
Mobile Operating System Market Share Worldwide from Jan - Dec 2010

—_—C —

~~ N e T~

T e — —(—

e
s
. . . - ~v — P
..

s 0§ 0§ 0§

by by & ;

Q 4 o @

34 O < Q

SymbianOS < i0S O BlackBerry OS <O Android <> Unknown Sony Ericsson O Samsung <O Playstation — Other (dotted)

POST-LEGACY

CONTEXT - SW2H

What?
Why?
Who?
When?
Where?
How?

How much?

NOOUAWNE

POST-LEGACY

EMPATHY

1. How do you react to pressure?

2. How do you deliver against deadlines?

3. How do you feel when the unexpected kicks in?
4. What is your background?

Time

Social
Life

Vacation

Family

Bills

Hobbies

Friends

Quality Cost

Problems

Goals

POST-LEGACY

EMPATHY

1. How do people react to pressure?
2. How do people deliver against deadlines?

3. How do people feel when the unexpected kicks in?
4. What is their background?

POST-LEGACY

RESOURCES

72? C/Q%ﬂ/%b&%/— %g%y/ - /5%&%////2& LC;;?///?A

“Any fool can write code that a computer can understand. ?&TIN FO
Good programmers write code that humans can understand.” :

—M. Fowler (1999) {'/\/l
v

A

=

%)

o

@) 2
O <
G ganst

R EFACTORING

Martin Fowler

with contributions by

Kent Beck

SEcoND EDITION

Robert L. Martin Series

WORKING

EFFECTIVELY
WITH

LEGACY CODE

Michael L. Feathers

Context

v
Empathy v 4
v

Tech Resources

Pre-Legacy

PRE-LEGACY

(on top of Alan Perlis’ famous quote) Rich Hickey

PRE-LEGACY

ALIGN EXPECTATIONS

1. Value (Feature)
2. Cost (Maintenance)
3. Learning/Hiring (both)

PRE-LEGACY

EVALUATION

1. Evaluation Frameworks
A. Are there other options available?

B. Pros vs. Cons
2. Avoid the Multi-Armed Bandit Problem

PRE-LEGACY

EXPERIMENTATION

1. Hackatons

2. Side-projects

3. Proof of Concepts

4. MVP or RAT (Riskiest Assumption Tests)

PRE-LEGACY

EXPERIMENTATION

Unusable product Minimum Viable Product Complete product
(embarrassing) (loveable but limited) (expensive)

https://blog.crisp.se/wp-content/uploads/2013/01 /HowSpotifyBuildsProducts.pdf

https://blog.crisp.se/wp-content/uploads/2013/01/HowSpotifyBuildsProducts.pdf

The JET Bicycle - The most dangerous unsafe bike EVER

T——

> ‘D 1:37 / 2:30 Scroll for details

v

s:/lwww.youtube.com/watch?v=bKHz/wQOjb%2w

https://www.youtube.com/watch?v=bKHz7wOjb9w

PRE-LEGACY

EXPERIMENTATION

HOW NOT TO BUILD A MINIMUM VIABLE PRODUCT

o—o Aui

1

ALSO HOW NOT TO BUILD A MINIMUM VIABLE PRODUCT
1 2 3
HOW TO BUILD A MINIMUM VIABLE PRODUCT
1 2 3

FRED VOORHORST EDUCATI.CH

PRE-LEGACY

IMPLEMENTATION

1. Isolate dependencies when possible

2. DDD - Keep the buzzwords away from your domain

3. Choose the right abstraction for you, avoiding tight
coupling

4. Be more skeptical with Frameworks - and a bit
more relaxed with Libraries

PRE-LEGACY

DOCUMENTATION

1. Don't be afraid of TODO's - express yourself
2. Architecture Decision Records
3. Document Incidents

Legacies are usually
time-sensitive.

Some Buzzwords too.

Software Engineering

is still young as Industry.

Context

v
Empathy v 4
v

Tech Resources

Align v
Evaluate v
Experiment v/

Implement

v

Document

Make it.
Break it.
Fix it.
Understand why others did it.
Help others understand why you did it.

Be a good ancestor.

Thanks

Gregorio Kusowski

Engineering Manager

gregorio.kusowski@hey.car

