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About us
Leading Machine Learning Platform For Ecommerce Search

120+Customers & Brands 1200+ Global Websites Over 1.5 Billion Interactions/Month
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Unbxd – Product Discovery Platform 

Built on Machine Learning and AI to drive better experiences, engagement, 
and ultimately drive conversions!

● Site Search
● Intelligent Storefront
● Product Recommendations



● Better relevance ⇔  weighted retrieval(weighted query terms) 
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Boolean Retrieval

● Query = “black bomber jacket”

● Search Setting: Minimum match(MM)
○ MM=100% ⇔  match any term, MM=0% ⇔ match 

all terms
○ MM=66% ⇔  also matches "black bomber". Far 

from good 
○ MM can’t specify importance of the terms. 
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Semantic Retrieval

● Classic relevance measures
○ Precision = num relevant docs/num retrieved docs
○ Recall = num relevant docs retrieved/num actual relevant docs

● Better relevance →  Semantic retrieval ( Key idea of this talk )
○ ⇔ Identify MT(must have) tokens 

■ Improves precision but may drop recall
○ ⇔ Augment MTs by synonyms (word sense disambiguated)

■ As disjunctive(OR)s of MTs for better recall
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MT : What noun best 
describes this product?

One classic-cool silhouette, two slick bomber jacket options. This 
reversible layer doubles your wardrobe by letting you switch from 
black to green to match tons of looks.

● Reversible bomber jacket
● Stand-up collar; Zip front
● Long sleeves; Pocket on left arm
● Hand pockets; Straight hem
● Polyester
● Machine wash
● Imported

Must Have Tokens improve precision

?
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Bomber Jacket
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Synonyms improve recall

● Synonymy variants that are also contextual to query most often more 
useful in ecommerce
○ Conventional synonyms: pullover ⇔ sweater

○ Strongly Related words:  printers ⇔  laserjet 

○ Spelling/lemma variants:
■  wireless enabled phone ⇔  phone with wifi,

■ “packers tee” ⇔  “green bay packers t-shirt”

● Boolean queries won't  find Christmas pajamas in ad-hoc categories 
and this is often the case
○  e.g. “festive wear”, “christmas PJs”, “festive pajamas” 

Thinking about 
buying Christmas 
Pajamas ?

Relevant products might be 
organized under category → 
“festive wear”, “christmas PJs”, 
“festive pajamas”



Query Understanding
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● Query = black bomber jacket  

● MT recognizer(black bomber jacket)  → 
(bomber jacket) 

● Synonym augmenter(bomber jacket) → 
(Moto Jacket, Motorcycle Jacket, Biker 
Jacket, windbreaker, Hooded Jacket) 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Candidate Set Generation

Dependency Parse of Queries

Generate Unigrams and Phrases

Score/Rank MTs

Domain Query Logs

Select top MTs based on cutoff

Relevance Feedback

MT DB

black  
ADJ

bomber  
NOUN

jacket  
NOUN

compound

amod

Query: black bomber jacket

● amod ⇔ adj-noun-modifier-relation : adj that 
modifies the meaning of the noun

● compound ⇔ noun-compound-noun relation: 
noun that modifies the meaning of another noun

● More than 85% top queries: amod

● More than 53% top queries: compound

MT Generation steps



Generate MTs using the Dependency Parser

● Unigram MTs ⇔  root of ‘amod’ relationships e.g jacket in 

‘black-amod-jacket’
● Phrase MTs ⇔ nouns connected with compound e.g 

‘bomber jacket’ in ‘bomber-compound-jacket’
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Candidate Set Generation

Dependency Parse of Queries

Generate Unigrams and Phrases

Score/Rank MTs

Domain Query Logs

Select top MTs based on cutoff

Relevance Feedback

MT DB

MT Generation steps

black  
ADJ
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● Score/rank generated MT based on 
actual_query_coverage + count(root_of_amod|
is_a_compound)

● Grammatically incorrect queries `jacket bomber black` 
will generate `black` as MT  but low 
count(root_of_amod|is_a_compound), hence rejected

Candidate Set Generation

Dependency Parse of Queries

Generate Unigrams and Phrases

Score/Rank MTs

Domain Query Logs

Select top MTs based on cutoff

Relevance Feedback

MT DB

MT Generation steps



1. Build Local Corpus per domain OR per customer
a. Local corpus ⇔ catalog + sample queries

2. Train word vector embedding of local corpus 
3. Generate MTs from local corpus to be used as keys
4. Generate synonyms 

a. Input MT list items to a Global Corpus(WordNet/ ConceptNet)
b. Input MT list items to Local Word2Vec.

5. Pipe synonyms word sense disambiguator (WSD) in embedding 
space:

a. Basis ⇔ Distance(synonymSubspace, querySubspace) 

distance
  6.    Reject winning candidates based on misspellings and     
         stemmed duplicates 
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Synonym Generation Pipeline 
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Language, meaning , context, machine

● Humans understand language very well, machines do not.
● Given millions of document being generated per day 

impossible for a human to categorize, classify or translate all 
of them. Hence we need to convert them to a format that 
helps machine do NLP.

● Representation of words which captures context of use, 
lexical ambiguity, semantic relationships is called Word Vector 
Embedding and it represents each word in the Vocabulary as 
a n-dimensional vector of floats that a machine understands.
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What are Word Vector Embeddings? 

● Words as symbols carry little information 
● Hinton : distributed representation

○ Represent word as word= f(contextual words) 
● Word vector embedding

○ Word vector = f(contextual words) in optimal dimensions
○ Captures context /lexical ambiguity/semantics difficult to 
○ model otherwise

● 2 neural network learned models
○ CBOW(given context → predict missing word)
○ Skipgram (given word → predict context) 
○ We have used Google Word2Vec 
○ (CBOW + Skip gram) Neural Net Embeddings



PCA Of Fashion Word Vector Embeddings
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PCA Of Fashion Word Vector Embeddings
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Can you 
guess the 
category?
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Word2Vec synonymy in catalog space

w2vecc ("bomber jacket") w2vecc  ("earrings")
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Word2Vec synonymy in user query space

w2vecu ("bomber jacket") w2vecu ("gloss")



Performing WSD using Word2Vec
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Semantic Retrieval Summary

● Query  → Dependency Parsing + Scoring → MT 

● Word2vec on local corpus 

● MT as key → Word2vec catalog synonym + clicklog 
synonym 

● MT as key → conceptnet/wordnet synonym 
candidates + WSD 

● MT OR SYNONYM → Final Query 

● Final Query → Edis Max Solr Query 



Conclusions and Future Work
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● We intend to train our own dependency parser using Deep Learning for 
further boosting MT recognition algorithm

● We intend to extend MT-SYNONYM learning from one client to other clients 
and finally over one domain

● We intend to improve and simplify the vector algebra operations on 
synonymy vector

● We intend to further tune and improve performance figures using 
mapreduce based Word2Vec training

● Implement relevance feedback to autocorrect good synonym and MT pairs 
vs noisy pairs



Thank you! 
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Questions ?

Team members : Gururaj Desai, Soumik Chatterjee, Prasad Joshi

Twitter : @ArpanmGupta, @seinjuti

Email : arpan@unbxd.com, seinjuti.chatterjee@unbxd.com



Addendum
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Performing WSD using Word2Vec - Ex2



Search Stack (Query Understanding Layer)
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GET /unbxd/_search { 
  "query" : "black bomber jacket" 

} 

GET /unbxd/_search { 
  "query" : "black bomber jacket", 
  “mt” : “bomber jacket” 
} 

GET /unbxd/_search { 
  "query" : "black bomber jacket", 
  “mt” : “bomber jacket”, 
  “synonym” : “motorcycle 
jacket, windbreaker jacket 
} 

MT Builder

Synonym Builder

Asterix Service

Brewer Service

QU Layer

Custom Solr Plugin

GET /unbxd/_search { 
  "query" : "black bomber jacket", 
  “modified_query” : “black +
( "bomber jacket" | "motorcycle 
jacket" | "windbreaker jacket" )” 
} 

GET /unbxd/_search { 
  "query" : "black bomber jacket", 
  “modified_query” : “black +
( "bomber jacket" | "motorcycle 
jacket" | "windbreaker jacket" )”, 
“MM” : 0, 
“boost”:”seersucker_brand” 
} 

GET /unbxd/_search { 
  "query" : "black bomber jacket", 
“edismax_query”:DisjunctionMa
xQuery(title: black) 
+DisjunctionMaxQuery( (title: 
"bomber jacket"  
title:"motorcycle jacket" 
title:"windbreaker jacket") ) 
} 

SOLRQuery 
Understanding

Http Server



On a 8 core 60 GB Linux AWS box network speed@94.5MB/s
1. Typical mts count per site based on queries ~ 8573 unigrams + bigrams
2. Typical synonyms count per site ~ 6554
3. Typical qps for dependency tree calculation ~ 1000 qps
4. Typical batch qps for conceptnet api based synonym prediction ~ 100 qps
5. Typical batch qps for wordnet api + wsd  based synonym prediction ~ 10 qps
6. qps for training word2vec model (multicore multithreaded but single machine) ~ 

865K qps
7. Typical accuracy of prediction ~ 10% error rate for known domains like fashion, 

grocery, home and living, 30% error rate for new domains like autoparts
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Performance Benchmark of MT and Synonym 



28

Google Word2Vec (CBOW + Skipgram)


