

From Boolean Towards Semantic Retrieval Models

Speakers : Arpan Gupta, Seinjuti Chatterjee

About us

Leading Machine Learning Platform For Ecommerce Search

Unbxd – Product Discovery Platform

Built on Machine Learning and AI to drive better experiences, engagement, and ultimately drive conversions!

- Site Search
- Intelligent Storefront
- Product Recommendations

Boolean Retrieval

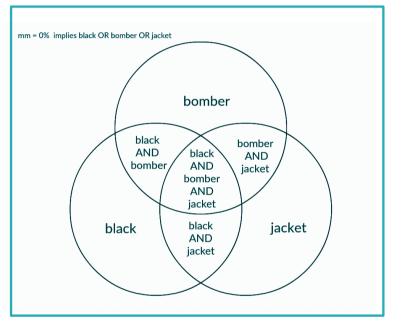
- Query = "black bomber jacket"
- Search Setting: Minimum match(MM)
 - **MM=100%** \Leftrightarrow match any term, **MM=0%** \Leftrightarrow match

all terms

• MM=66% \Leftrightarrow also matches "black bomber". Far

from good

- MM can't specify importance of the terms.
- Better relevance ⇔ weighted retrieval(weighted query terms)



Semantic Retrieval

- Classic relevance measures
 - Precision = num relevant docs/num retrieved docs
 - Recall = num relevant docs retrieved/num actual relevant docs
- Better relevance → Semantic retrieval (Key idea of this talk)
 - $\circ \Rightarrow$ Identify MT(must have) tokens
 - Improves precision but may drop recall
 - $\circ \Rightarrow$ Augment MTs by synonyms (word sense disambiguated)
 - As disjunctive(OR)s of MTs for better recall

Must Have Tokens improve precision

MT : What noun best describes this product?

One classic-cool silhouette, two slick bomber jacket options. This reversible layer doubles your wardrobe by letting you switch from black to green to match tons of looks.

- Reversible bomber jacket
- Stand-up collar; Zip front
- Long sleeves; Pocket on left arm
- Hand pockets; Straight hem
- Polyester
- Machine wash
- Imported

Must Have Tokens improve precision

0

Bomber Jacket

MT : What noun best describes this product?

One classic-cool silhouette, two slick bomber jacket options. This reversible layer doubles your wardrobe by letting you switch from black to green to match tons of looks.

- Reversible bomber jacket
- Stand-up collar; Zip front
- Long sleeves; Pocket on left arm
- Hand pockets; Straight hem
- Polyester
- Machine wash
- Imported

Synonyms improve recall

Relevant products might be organized under category → "festive wear", "christmas PJs", "festive pajamas"

- Synonymy variants that are also contextual to query most often more useful in ecommerce
 - Conventional synonyms: pullover ⇔ sweater
 - Strongly Related words: printers ⇔ laserjet
 - Spelling/lemma variants:
 - wireless enabled phone \Leftrightarrow phone with wifi,
 - "packers tee" ⇔ "green bay packers t-shirt"
 - Boolean queries won't find Christmas pajamas in ad-hoc categories and this is often the case
 - o e.g. "festive wear", "christmas PJs", "festive pajamas"

Query Understanding

EXPRESSIVEW E228-00 5150.99

\$128.00 \$76.80 Reversible Bomber Jacket

Bomber Jacket

\$228.00 \$150.99 2 colors Quilted System Biker Jacket

\$148.00 \$88.80 2 colors Performance Water-Resistant Zip Front Hooded Jacket

\$128.00 \$76.80 Color Block Pieced Windbreaker

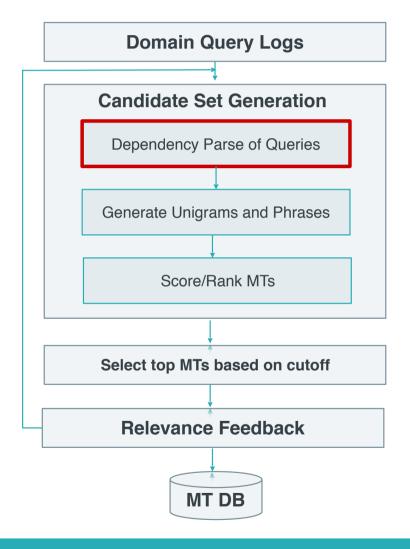
EXPRESS VIEW

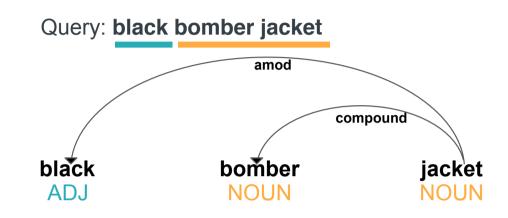
• Query = black bomber jacket

 MT recognizer(black bomber jacket) → (bomber jacket)

 Synonym augmenter(bomber jacket) → (Moto Jacket, Motorcycle Jacket, Biker Jacket, windbreaker, Hooded Jacket)

MT Generation steps

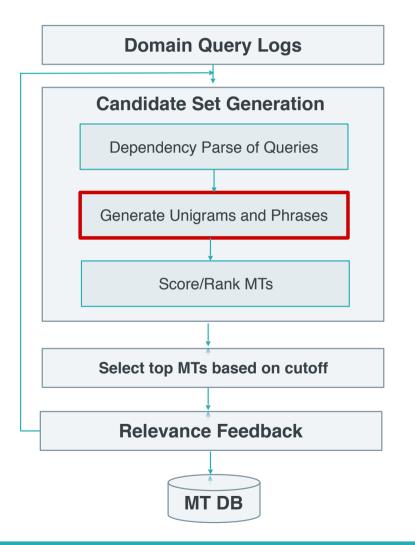


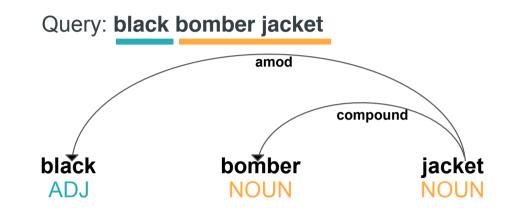


- amod ⇔ adj-noun-modifier-relation : adj that modifies the meaning of the noun
- compound ⇔ noun-compound-noun relation:
 noun that modifies the meaning of another noun
- More than **85%** top queries: amod
- More than **53%** top queries: compound

UNBXD

MT Generation steps

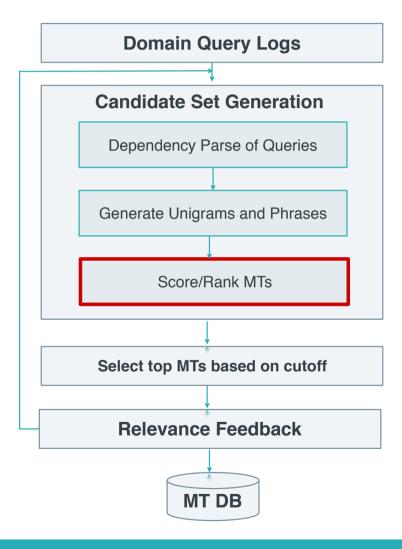




Generate MTs using the Dependency Parser

- Unigram MTs ⇔ root of 'amod' relationships e.g jacket in 'black-amod-jacket'
- Phrase MTs ⇔ nouns connected with compound e.g

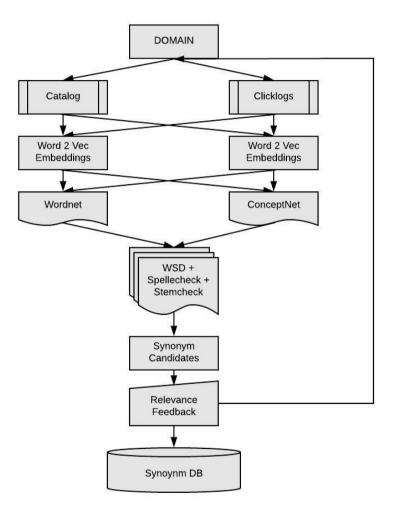
'bomber jacket' in 'bomber-compound-jacket'



MT Generation steps

- Score/rank generated MT based on actual_query_coverage + count(root_of_amodl is_a_compound)
- Covered NonCovered
- Grammatically incorrect queries `jacket bomber black` will generate `black` as MT but low count(root_of_amodlis_a_compound), hence rejected

Synonym Generation Pipeline



- 1. Build Local Corpus per domain OR per customer
 - a. Local corpus ⇔ catalog + sample queries
- 2. Train word vector embedding of local corpus
- 3. Generate MTs from local corpus to be used as keys
- 4. Generate synonyms
 - a. Input MT list items to a Global Corpus(WordNet/ ConceptNet)
 - b. Input MT list items to Local Word2Vec.
- 5. Pipe synonyms word sense disambiguator (**WSD**) in embedding space:
 - a. Basis ⇔ Distance(synonymSubspace, querySubspace)

distance

6. Reject winning candidates based on misspellings and stemmed duplicates

DAD JOKES#

ATM

eswatercolour

dad. wha

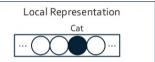
are you

Language, meaning, context, machine

- Humans understand language very well, machines do not.
- Given millions of document being generated per day impossible for a human to categorize, classify or translate all of them. Hence we need to convert them to a format that helps machine do NLP.
- Representation of words which captures context of use, lexical ambiguity, semantic relationships is called Word Vector Embedding and it represents each word in the Vocabulary as a n-dimensional vector of floats that a machine understands.

joke u/ufroac illustrations @swatercolour UNBXD

What are Word Vector Embeddings?

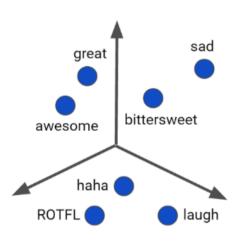


One-hot vectorOnly one units is one, and another

must be zero

 The concept 'cat' is represented as strength of firing of units

Distributed Representation

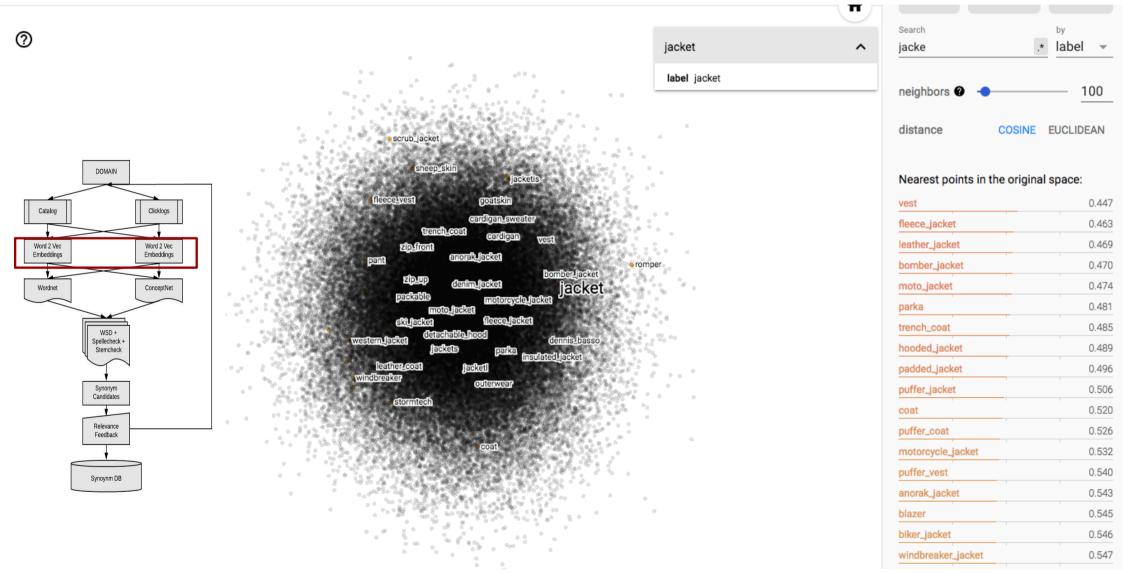


Word Embedding Vectors (dense, continuous space)

- Words as symbols carry little information
- Hinton : distributed representation
 - Represent word as word= f(contextual words)
- Word vector embedding
 - Word vector = f(contextual words) in optimal dimensions
 - Captures context /lexical ambiguity/semantics difficult to
 - model otherwise
- 2 neural network learned models
 - CBOW(given context \rightarrow predict missing word)
 - Skipgram (given word \rightarrow predict context)
 - We have used Google Word2Vec
 - (CBOW + Skip gram) Neural Net Embeddings

PCA Of Fashion Word Vector Embeddings

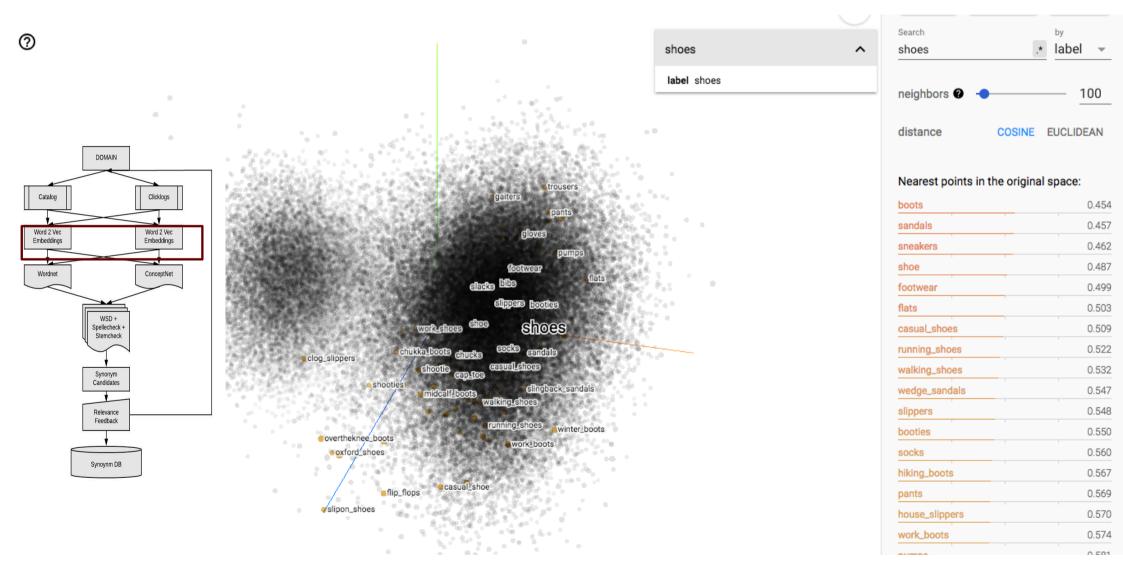
UNBXD



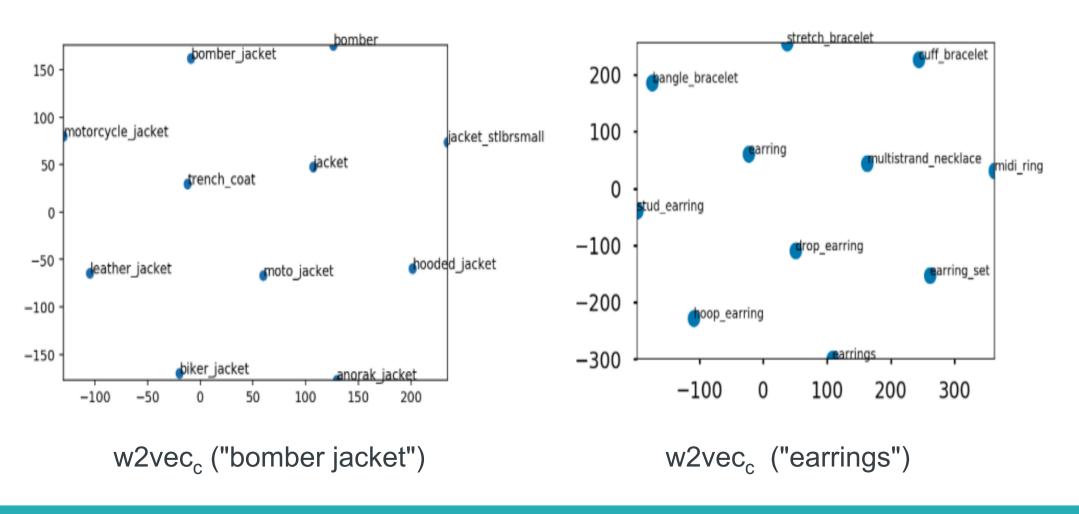
PCA Of Fashion Word Vector Embeddings

BERLIN

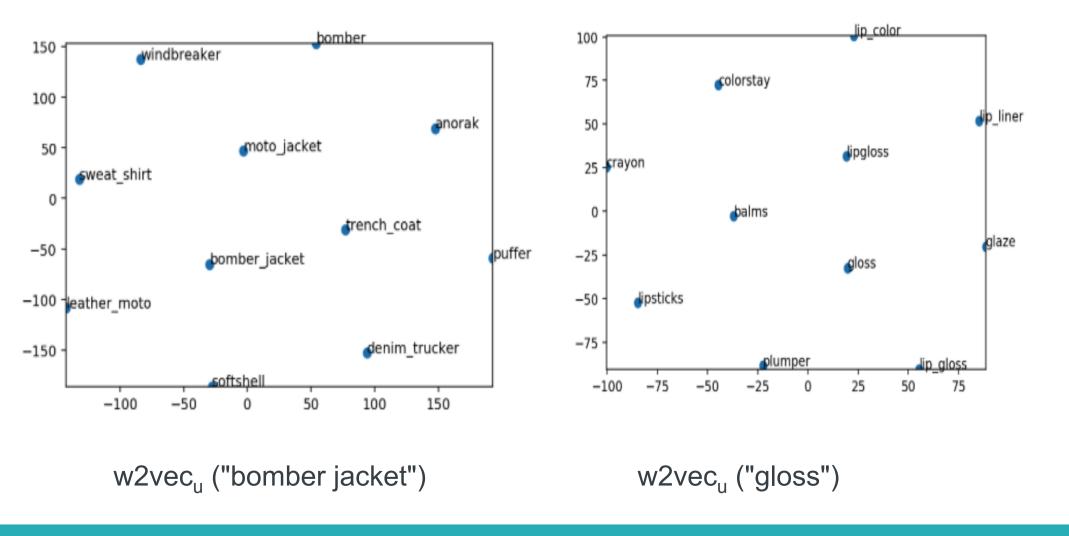
BUZZWORDS



Word2Vec synonymy in catalog space



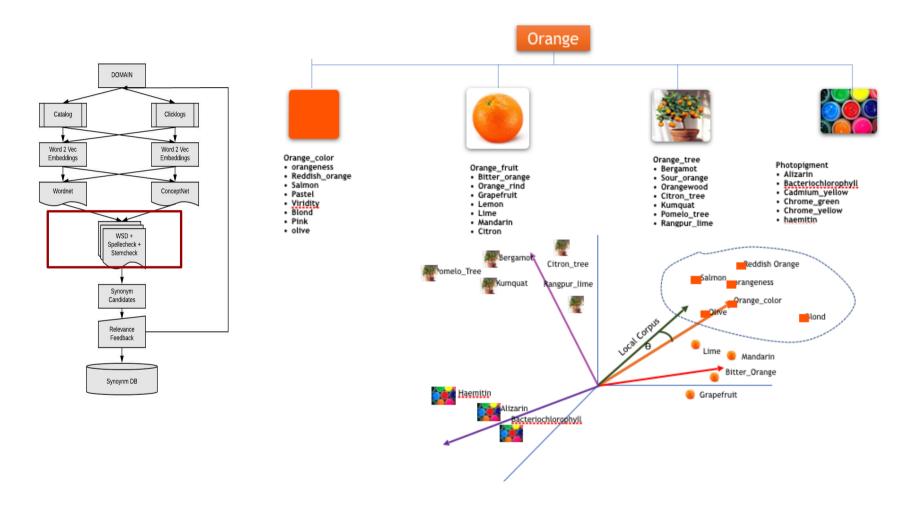
Word2Vec synonymy in user query space



19

UNBXD

Performing WSD using Word2Vec



Semantic Retrieval Summary

- Query = black bomber jacket
- MT recognizer(black bomber jacket) → (bomber jacket)
- Synonym augmenter(bomber jacket) \rightarrow (Moto Jacket, Motorcycle Jacket, Biker Jacket, windbreaker, Hooded Jacket)

- Query \rightarrow Dependency Parsing + Scoring \rightarrow MT
- Word2vec on local corpus
- MT as key \rightarrow Word2vec catalog synonym + clicklog • synonym
- MT as key \rightarrow conceptnet/wordnet synonym candidates + WSD
- MT OR SYNONYM \rightarrow Final Query
- Final Query \rightarrow Edis Max Solr Query

Conclusions and Future Work

- We intend to train our own dependency parser using Deep Learning for further boosting MT recognition algorithm
- We intend to extend MT-SYNONYM learning from one client to other clients and finally over one domain
- We intend to improve and simplify the vector algebra operations on synonymy vector
- We intend to further tune and improve performance figures using mapreduce based Word2Vec training
- Implement relevance feedback to autocorrect good synonym and MT pairs vs noisy pairs

Thank you!

Team members : Gururaj Desai, Soumik Chatterjee, Prasad Joshi

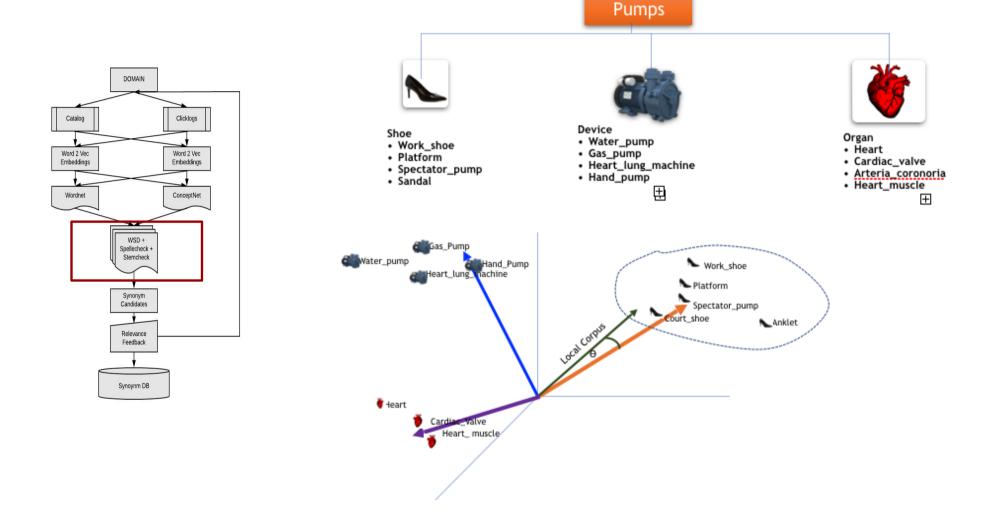
Twitter : @ArpanmGupta, @seinjuti

Email : arpan@unbxd.com, seinjuti.chatterjee@unbxd.com

Questions ?

Addendum

Performing WSD using Word2Vec - Ex2

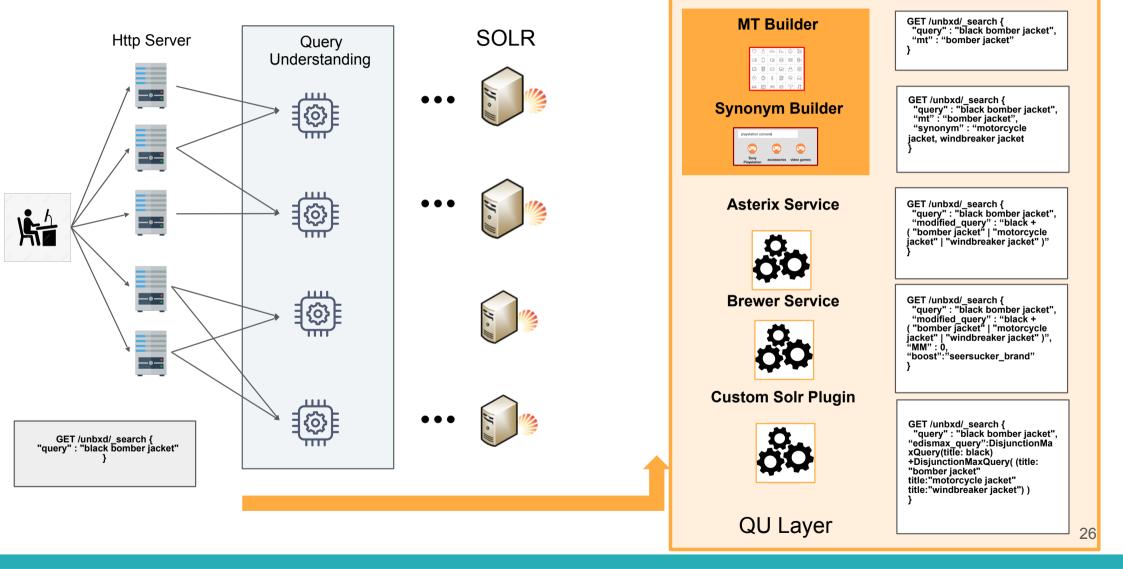


Search Stack (Query Understanding Layer)

BERLIN

BUZZWORDS

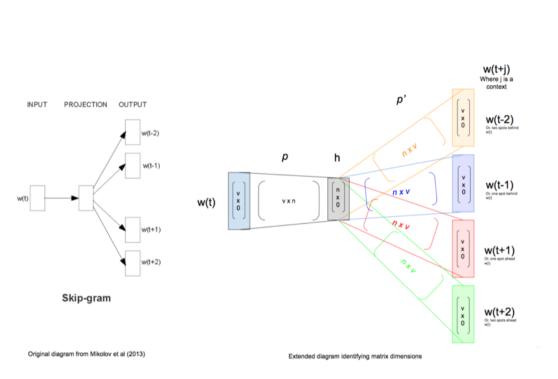
2018 JUNE 10-12



On a 8 core 60 GB Linux AWS box network speed@94.5MB/s

- 1. Typical mts count per site based on queries ~ 8573 unigrams + bigrams
- 2. Typical synonyms count per site ~ 6554
- 3. Typical qps for dependency tree calculation ~ 1000 qps
- 4. Typical batch qps for conceptnet api based synonym prediction ~ 100 qps
- 5. Typical batch qps for wordnet api + wsd based synonym prediction ~ 10 qps
- qps for training word2vec model (multicore multithreaded but single machine) ~ 865K qps
- Typical accuracy of prediction ~ 10% error rate for known domains like fashion, grocery, home and living, 30% error rate for new domains like autoparts

The Skip-Gram Algorithm:



Google Word2Vec (CBOW + Skipgram)

