
 Evolution of Yelp Search to a Ranking Platform
Umesh Dangat

Yelp’s Mission
Connecting people with great

local businesses.

Yelp by the Numbers

● Our users have written more than 184
million reviews by the end of Q1 2019

● Monthly average of unique visitors who
visited Yelp in Q1 2019
○ 35 million via the Yelp app and
○ 69 million via mobile web

● Billions of queries served per year

Yelp Core Search

Old Search architecture, until late
2017..

● Master Follower architecture
● leaf search = lucene index

● distributed lucene
indexes (shards)

Coupled search infrastructure code with search relevance

● Growing team size and specialization of role e.g. relevance experts vs

infrastructure engineers implied creating better boundaries in this
codebase

● Iteration speed on codebase was getting harder

Issues with this system

 Operational burden

● Ever growing size of data meant
○ Many lucene instances due to sharding and replication
○ Slow code pushes
○ Each instance takes time to startup due to data loading

● Engineers spending more time maintaining the system than writing new
features

Issues with this system

Adding new features was hard

● Modifying schema is hard. So hard to make ranking improvements.
○ Analyzers cannot be iterated upon
○ Adding fields is hard, needs backfill

● Could not do real-time indexing needed for delivery, reservations

Issues with this system

Requirements for the new system...

Inside the leaf search node

● Custom Ranking (CustomQuery, CustomWeight, CustomScorer)

● Custom Analyzers

● Data on the Java Heap

● Highlights and Logging

Components to port

Elasticsearch native plugins allows
us to house custom java code.

● Custom Ranking (CustomQuery, CustomWeight, CustomScorer) →
ScriptPlugin

● Custom Analyzers → AnalysisPlugin

● Data on the Java Heap → DocValues

● Other Features:
○ ScoreComponents → SearchPlugin
○ Highlights → SearchPlugin

Components to port

Idea is to run the entire scoring code within the ScriptPlugin
● Know your scopes. ES provides context at:

○ per document level i.e. SearchScript.runAsDouble
○ per segment i.e. LeafFactory.newInstance(LeafReaderContext)
○ per shard i.e. SearchScript.Factory.newFactory returns LeafFactory
○ per query SearchScript.Factory instantiation
○ per jvm instance i.e. plugin instantiation

● The class names change with ES versions, but make sure you know the
scopes!

Custom Ranking

Idea is to run the entire analysis code within the AnalysisPlugin
● Implement getAnalyzers

● Issue: Old code uses a much older version of lucene.
○ Quick fix (hack)

■ Use shading
<relocation>
<pattern>org.apache</pattern>
<shadedPattern>com.yelp.search.oldschool.analyzers.shaded.org.apache</shadedPattern>
</relocation>

○ Better (time consuming fix)
■ Update version of lucene in your custom analyzers

Custom Analyzers

Majority of the document based data can be moved to the index itself

● SearchScript.getDoc()

● Non document based data can be passed in as query parameters

● Support binary field types in script values
○ elasticsearch/pull/21484
○ List<ByteBuffer> queryContext = document.getList(ByteBuffer.class, "query_context");

Data off java heap

https://github.com/elastic/elasticsearch/pull/21484

Implement FetchSubPhase to get things about the document like

● Highlights
● Score components/Logging

Other Features

Performance tips

● Use Elasticsearch tools like Profile API for measuring bottlenecks
● Within a shard scoring is linear, scales with #shards, up to a point
● Doc values FTW !
● Java debugging is “fun”. Using right tools like jprofiler, jmap, jstack helps

○ simply invoking jstack repeatedly helped us find performance
bottlenecks

○ CMS was a no go. Have been using G1 in production for over a year
now.

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-profile.html

Life after generalizing the search
architecture

● Delete thousands of lines of code needed to manage federation of lucene
indexes

● Happier Oncall

● Multiple teams at Yelp needing to filter and rank could now use the same
codebase on different data (ES Clusters) !!
○ Ads
○ Request a quote

● Unlock new functionality...

Benefits of the new architecture

Can we leverage our technological investment in elasticsearch, by hosting
machine learning models in elasticsearch?

● Reuse the ES infrastructure

● Scalability and performance
○ Bring computation to each shard

● Reusable infrastructure across teams

ML on ES?

Learning to Rank Plugin

Developed by Open Source Connections

● Uses elasticsearch to host machine learned models

● Decouple model and feature training from online deployment
○ Simply POST features and models to ES which will be executed query

time

● Supports variety of models like linear models, XGBoost, Ranklib

https://github.com/o19s/elasticsearch-learning-to-rank

Scoring with
LTR

Learning to Rank
Plugin and Yelp

● Yelp is a collaborator to the LTR plugin
○ haystack 2019 talk

● As of today, we run several of our critical search
workflows using LTR

● Contributions welcomed!

https://haystackconf.com/2019/evolution/

www.yelp.com/careers/

Software Engineer -Data
& Production Backend

We're Hiring!

https://www.yelp.com/careers/job-openings/2cfdf523-06dd-41d9-b025-3db1b45f0548?description=Software-Engineer-Data-Production-Backend_Engineering_London-UK
https://www.yelp.com/careers/job-openings/2cfdf523-06dd-41d9-b025-3db1b45f0548?description=Software-Engineer-Data-Production-Backend_Engineering_London-UK

@YelpEngineering

fb.com/YelpEngineers

engineeringblog.yelp.com

github.com/yelp

Questions?

Thank you.

