
Large-scale Data Quality Verification
How to Unit-test Your Data with

Deequ
Presenter: Philipp Schmidt

Amazon Research



What‘s in it for me?

• Learn how to unit-test your data
• On data of any scale
• Every day, also as part of ETL pipelines
• To fail fast and improve

• Low entry barrier for first usage of deequ
• You can start verifying data quality today

• Deequ is available on GitHub



3

Why should we care about Data Quality?



4

Why should we care about Data Quality?

● impact on business decisions
● Missing or incorrect data results in wrong decision making



5

Why should we care about Data Quality?

● impact on ML models
● clean data can greatly

improve model performance

Krishnan et al., SIGMOD Tutorial on Data Cleaning 2016



6

Why should we care about Data Quality?

Sculley et al., Hidden technical debt in ML Systems, NIPS 2015

● data at heart of ML systems



7

Why should we care about Data Quality?

● impact on operational stability
● missing and inconsistent data can cause havoc in production systems

!"
#$" ?

Wrong predictions (e.g., change of scale in attribute)Crashes (e.g., due to NullPointerExceptions for missing attributes)



Quality Assurance

• Software
• Established practice to have tests for software components

• Unit-tests
• Integration-tests
• …

• Data
• Often tedious, repetetive and done in ad-hoc fashion
• unit-tests for data: Deequ



Overview of Deequ



Constraint verification in deequ

• A unit-test for data
• Scales to big data sets

• Metrics computed as SQL aggregation queries in Apache Spark

• Computes several data quality metrics (e.g., how many NULLs are there?)
• Completeness/Uniqueness/Compliance/…

• Executes user-defined validation code (e.g., are there less than 2% NULLS?)



A Unit Test for Data
val numTitles = callRestService(...)

VerificationSuite()
.onData(data)
// data integrity
.addCheck(Check(Level.Error)
.isComplete("customerId", "title")
.isUnique("customerId")
.hasCountDistinct("title", _ == numTitles)
.hasHistogramValues("deviceType", _.ratio("phone") <= 0.84))
.isInValidRange("priority", ("hi", "lo"))
// also check whether the current data size is similar to the
// previously calculated ones
.useRepository(FileSystemMetricsRepository(”s3://…”))
.addAnomalyCheck(OnlineNormal(stdDevs=3), Size())
.run()



Data quality verification for partitioned data

• Example: Impression logs with daily partitions

• Verification of data quality constraints

• Every day

• Incrementally, on all data



Naïve Incremental

Sunday Monday Tuesday

• Global constraint evaluations scans all available data
• Computational load proportional to overall data size

Metrics & Constraint Verification Metrics & Constraint Verification

• Global constraint evaluation combines partition states
• Computational load proportional to partition data size

!"#"$%&'()*

Sunday Monday Tuesday

!"#"$+&,-()*!"#"$./'()*

Today Today



Data quality verification for partitioned data

val completeness = Completeness("origin")

// Compute state of the changed partition
val newStateToday =
completeness.computeStateFrom(newPartitionToday)

// Load states of non-changed partitions
val (stateSunday, stateMonday) = loadPreviousStates("…")

// Sum of the states of the individual partitions
val newTableState = stateSunday + stateMonday + newStateToday

// Compute the completeness of 'origin' in the whole table from the new 
state
val newTableCompleteness = completeness.computeMetricFrom(newTableState)



Continuous data quality verification

• Data quality metrics computed
on a regular basis (e.g., every day)

• Detect sudden changes
of data quality metrics
without the need to configure
explicit thresholds



A Unit Test for Data
val numTitles = callRestService(...)

VerificationSuite()
.onData(data)
// data integrity
.addCheck(Check(Level.Error)
// also check whether the current data size is similar to the
// previously calculated ones
.useRepository(FileSystemMetricsRepository(”s3://…”))
.addAnomalyCheck(OnlineNormal(stdDevs=3), Size())
.run()



Summary

• Data central to human and algorithmic decision making

• Data quality verification usually done in ad-hoc fashion

• Deequ enables you to assert data quality at scale with a concise API

• Efficient constraint verification for partitioned data

• Data quality verification without explicit assertions



Further information

• See our VLDB 2018 paper „Automating Data Quality Verification at Scale“ 
for more details and experiments
• https://dl.acm.org/citation.cfm?id=3275547

• Deequ is open source
• https://github.com/awslabs/deequ

• AWS Big Data Blog Post
• https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ

https://dl.acm.org/citation.cfm?id=3275547
https://github.com/awslabs/deequ
https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ

