
THE REVOLUTION WILL
BE CONTAINERIZED:
ARCHITECTING THE INTELLIGENT
APPS OF TOMORROW
William Benton • willb@redhat.com • @willb
Red Hat, Inc.

PTOLEMY of ALEXANDRIA
(ca. 100–170)

PTOLEMY of ALEXANDRIA
(ca. 100–170)

NICOLAUS COPERNICUS
(1473-1543)

THOMAS KUHN
(1922–1996)

THOMAS KUHN
(1922–1996)

THOMAS KUHN
(1922–1996)

The cluster-centric model

The cluster-centric model

Towards an app-centric model

Towards an app-centric model

Forecast
Motivating containers

Architectures for intelligent applications

Practical concerns

Where to go from here

CONTAINERS: WHAT AND WHY

What is a container?

What is a container?
…a lightweight VM?

…a way to totally isolate applications?

…a packaging format for a container runtime or
orchestration platform?

pid

root

net

$SPARK_HOME/bin/spark-class \
 org.apache.spark.deploy.worker.Worker \
 master:7077

pid

root

net

$SPARK_HOME/bin/spark-class \
 org.apache.spark.deploy.worker.Worker \
 master:7077

pid

root /

net

$SPARK_HOME/bin/spark-class \
 org.apache.spark.deploy.worker.Worker \
 master:7077

pid

root /

net

$SPARK_HOME/bin/spark-class \
 org.apache.spark.deploy.worker.Worker \
 master:7077

pid

root /tmp/foo

net

$SPARK_HOME/bin/spark-class \
 org.apache.spark.deploy.worker.Worker \
 master:7077

container runtime

pid

root /tmp/foo

net

$SPARK_HOME/bin/spark-class \
 org.apache.spark.deploy.worker.Worker \
 master:7077

container runtime
SPEED
LIMIT

55

pid

root

net

$SPARK_HOME/bin/spark-class \
 org.apache.spark.deploy.worker.Worker \
 master:7077

/

pid

root

net

$SPARK_HOME/bin/spark-class \
 org.apache.spark.deploy.worker.Worker \
 master:7077

/

What is a container?
…a lightweight VM?

…a way to totally isolate applications?

…a packaging format for a container runtime or
orchestration platform?

What is a container?
…a lightweight VM?

…a way to totally isolate applications?

…a packaging format for a container runtime or
orchestration platform?

…a lightweight means to address some of the same use cases as VMs.

What is a container?
…a lightweight VM?

…a way to totally isolate applications?

…a packaging format for a container runtime or
orchestration platform?

…a lightweight means to address some of the same use cases as VMs.

…a way to provide reasonable, not exhaustive application isolation.

What is a container?
…a lightweight VM?

…a way to totally isolate applications?

…a packaging format for a container runtime or
orchestration platform?

…a lightweight means to address some of the same use cases as VMs.

…a way to provide reasonable, not exhaustive application isolation.

…really, just any Linux process with some special settings!

Microservice architectures

Microservice architectures

Microservice architectures

Microservice architectures

Microservice architectures

Microservices and containers
are a natural fit for one another!

Microservices for operators

Microservices for operators

Microservices for operators

Microservices for operators

Microservices for developers

Microservices for developers
2 + 2

Microservices for developers
2 + 2 5

Microservices for developers
2 + 2 5

Microservices for developers

Microservices for developers

Microservices for developers

Microservices for developers

Microservices for developers
…and data scientists!

Cloud-native applications are…
Containerized

Dynamically-orchestrated

Microservice-oriented

Cloud-native applications are…
Containerized

Dynamically-orchestrated

Microservice-oriented

Cloud-native applications are…
Containerized

Dynamically-orchestrated

Microservice-oriented

Cloud-native applications are…
Containerized

Dynamically-orchestrated

Microservice-oriented

Contemporary analytics and compute
frameworks are most of the way there!

Microservices for analytics

executor

1 2 3

executor

4 5 6

executor

7 8 9

executor

10 11 12

master

Microservices for analytics

executor

1 2 3

executor

4 5 6

executor

7 8 9

executor

10 11 12

master

λ x: x * 2

Microservices for analytics

executor

1 2 3

executor

4 5 6

executor

7 8 9

executor

10 11 12

master

λ x: x * 22 4 6 8 10 12 14 16 18 20 22 24

λ x: x * 2 λ x: x * 2 λ x: x * 2 λ x: x * 2

Microservices for analytics

executor

1 2 3

executor

4 5 6

executor

7 8 9

executor

10 11 12

master

λ x: x * 22 4 6 8 10 12 14 16 18 20 22 24

λ x: x * 2 λ x: x * 2 λ x: x * 2 λ x: x * 2

Microservices for analytics

executor

1 2 3

executor

4 5 6

executor

7 8 9

executor

10 11 12

master

λ x: x * 22 4 6 8 10 12 14 16 18 20 22 24

λ x: x * 2 λ x: x * 2 λ x: x * 2 λ x: x * 2

LEGACY ARCHITECTURES FOR
ANALYTICS AND APPLICATIONS

Transactions and analytics
events

Transactions and analytics
transformevents

Transactions and analytics
transformevents

UI

Transactions and analytics
transformevents

UI business
logic

Transactions and analytics
transformevents

UI business
logic

RDBMS

transaction 
processing

Transactions and analytics
transformevents

UI business
logic

RDBMS

transaction 
processing

Transactions and analytics
transformevents

UI business
logic

RDBMS

transaction 
processing

Transactions and analytics
transformevents

UI business
logic

RDBMS RDBMS

transaction 
processing

Transactions and analytics
transformevents

UI business
logic

RDBMS RDBMS

analysis

transaction 
processing

Transactions and analytics
transformevents

UI business
logic

RDBMS RDBMS

analysis

reporting

transaction 
processing

Transactions and analytics
transformevents

UI business
logic

RDBMS RDBMS

analysis

reporting

transaction 
processing

Transactions and analytics
transformevents

UI business
logic

RDBMS RDBMS

analysis

interactive 
queryreporting

transaction 
processing

Transactions and analytics
transformevents

UI business
logic

RDBMS analytic 
processing

RDBMS

analysis

interactive 
queryreporting

The “data lake”

HDFS HDFS HDFS

The “data lake”

HDFS HDFS HDFS HDFS HDFS

The “data lake”

HDFS

events

HDFS HDFS HDFS HDFS

The “data lake”

HDFS

events

HDFS HDFS HDFS HDFS

The “data lake”

HDFS

compute

events

HDFS

compute

HDFS

compute compute compute

HDFS HDFS

Where do the applications go?

Architectures that separate
analytics from applications
make sense only if analytics is a
separate workload.

AN ARCHITECTURE FOR ANALYTIC
APPLICATIONS IN CONTAINERS

High-level app architecture

federate

events

databases

file, object
storage

transform

transform

transform

archive

High-level app architecture

federate

trainmodels

events

databases

file, object
storage

transform

transform

transform

archive

High-level app architecture

federate

trainmodels

events

databases

file, object
storage

management

web and mobile

reporting

developer UItransform

transform

transform

archive

High-level app architecture

federate

trainmodels

events

databases

file, object
storage

management

web and mobile

reporting

developer UItransform

transform

transform

archive

High-level app architecture

federate

trainmodels

archive

events

databases

file, object
storage

management

web and mobile

reporting

developer UItransform

transform

transform

Multitenant compute clusters
Cluster scheduler

Shared FS /
object store

Spark executor

Spark executor

Spark executor

Spark executor

Spark executor

Spark executor

Resource manager

app 1 app 2

app 4app 3

Databases

Multitenant compute clusters
Cluster scheduler

Shared FS /
object store

Spark executor

Spark executor

Spark executor

Spark executor

Spark executor

Spark executor

Resource manager

app 1 app 2

app 4app 3

Databases

One cluster per application
Resource manager

Shared FS /
object store

app 1 app 2

app 5app 4

app 3

app 6

Databases

One cluster per application
Resource manager

Shared FS /
object store

app 1 app 2

app 5app 4

app 3

app 6

app 2

app 4

Databases

PRACTICAL CONCERNS:
SECURITY AND PERFORMANCE

systemd

qemu

qemu

qemu

systemd

nginx

mongodb

spark-class /t
mp
/f
oo

/t
mp
/b
ar

/t
mp
/b
la
h

systemd

nginx

mongodb

spark-class

spark-class /t
mp
/f
oo

systemd

nginx

spark-class /t
mp
/f
oo

systemd

nginx

spark-class /t
mp
/f
oo

systemd

nginx
SELinux limits your exposure to an exploit in a
container or a bug in a container runtime.

Root is root

…

/t
mp
/f
oo

Root is root

…

/

Root is root

…

/

…and you might not have a password file!
Use nss_wrapper to provide one.

Denials of service

…

/t
mp
/f
oo

Denials of service

…

/t
mp
/f
oo

Kernel panics

…

/t
mp
/f
oo

Kernel panics

…

/t
mp
/f
oo

Keeping secrets

…

/t
mp
/f
oo

Keeping secrets

…

/t
mp
/f
oo

Shared FS /
object store

ACCESS_KEY=…
SECRET_KEY=…

Keeping secrets

cat <<EOF > secret.txt
ACCESS_KEY=…
SECRET_KEY=…
EOF
git add secret.txt

Keeping secrets
cat <<EOF > secret.txt
ACCESS_KEY=…
SECRET_KEY=…
EOF
git add secret.txt

export ACCESS_KEY=…
export SECRET_KEY=…

Keeping secrets
cat <<EOF > secret.txt
ACCESS_KEY=…
SECRET_KEY=…
EOF
git add secret.txt

export ACCESS_KEY=…
export SECRET_KEY=…

kubectl create secret \
 generic mysecrets \
 --from-file=… \
 --from-file=…

Keeping secrets
cat <<EOF > secret.txt
ACCESS_KEY=…
SECRET_KEY=…
EOF
git add secret.txt

export ACCESS_KEY=…
export SECRET_KEY=…

kubectl create secret \
 generic mysecrets \
 --from-file=… \
 --from-file=…

Potential performance pitfalls

Potential performance pitfalls

Hypervisors introduce overhead.
Use more lightweight isolation
mechanisms to preserve performance.

Potential performance pitfalls

Potential performance pitfalls

Potential performance pitfalls
Virtualized networking likely
has minimal impact on overall
application performance!

Potential performance pitfalls
Virtualized networking likely
has minimal impact on overall
application performance!

…but measure the
performance of your
I/O configuration!

Potential performance pitfalls

Potential performance pitfalls

SPEED
LIMIT
55

Potential performance pitfalls

SPEED
LIMIT
55

Quotas mean some ubiquitous techniques can have
surprising performance impact. Consider in particular
GC configuration and disk buffer cache use.

Potential performance pitfalls

SPEED
LIMIT
55

If you use a recent build of OpenJDK 8 or 9,
you have a container-aware JVM!

(If not, set limits manually.)

Container-aware JVM features

java -XX:+UnlockExperimentalVMOptions \
 -XX:+UseCGroupMemoryLimitForHeap

Runtime.getRuntime().availableProcessors()

Do the right thing for memory…

…and for CPU!

NEW!

CONCLUSIONS AND WHERE  
TO GO FROM HERE

Architectural takeaways
Many frameworks are already cloud-native

Use a single compute cluster per app

Storage lives outside containers and is accessed
through service interfaces

Correctness takeaways
Arbitrary code isn’t safe just because it’s in a container,
so don’t run code in containers as root

Use SELinux to minimize exposure to error and malice

Avoid ad hoc mechanisms for configuring secrets

Ephemeral user IDs may confuse your framework

Performance takeaways
Don’t use hypervisors for isolation

Virtualized networking is probably not a concern

Optimizations that work well outside of containers may
have surprising consequences inside containers!

How to get started
Visit https://radanalytics.io for tooling, a containerized
Spark distribution, and example applications

Stay in touch!

https://radanalytics.io

willb@redhat.com 
https://chapeau.freevariable.com
https://radanalytics.io

THANKS!
also: WE ARE HIRING

mailto:willb@redhat.com?subject=
https://chapeau.freevariable.com
http://radanalytics.io

