
THE REVOLUTION WILL 
BE CONTAINERIZED: 
ARCHITECTING THE INTELLIGENT 
APPS OF TOMORROW
William Benton  •  willb@redhat.com  •  @willb 
Red Hat, Inc.



PTOLEMY of ALEXANDRIA 
(ca. 100–170)



PTOLEMY of ALEXANDRIA 
(ca. 100–170)



NICOLAUS COPERNICUS 
(1473-1543)



THOMAS KUHN 
(1922–1996)



THOMAS KUHN 
(1922–1996)



THOMAS KUHN 
(1922–1996)



The cluster-centric model



The cluster-centric model







Towards an app-centric model



Towards an app-centric model



Forecast
Motivating containers 

Architectures for intelligent applications 

Practical concerns 

Where to go from here



CONTAINERS:  WHAT AND WHY



What is a container?



What is a container?
…a lightweight VM? 

…a way to totally isolate applications? 

…a packaging format for a container runtime or 
orchestration platform?
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What is a container?
…a lightweight VM? 

…a way to totally isolate applications? 

…a packaging format for a container runtime or 
orchestration platform?

…a lightweight means to address some of the same use cases as VMs.

…a way to provide reasonable, not exhaustive application isolation.

…really, just any Linux process with some special settings!
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Microservices and containers 
are a natural fit for one another!
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Microservices for developers
…and data scientists!
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Cloud-native applications are…
Containerized 

Dynamically-orchestrated 

Microservice-oriented

Contemporary analytics and compute 
frameworks are most of the way there!
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LEGACY ARCHITECTURES FOR 
ANALYTICS AND APPLICATIONS
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Where do the applications go?



Architectures that separate 
analytics from applications 
make sense only if analytics is a 
separate workload.



AN ARCHITECTURE FOR ANALYTIC 
APPLICATIONS IN CONTAINERS
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PRACTICAL CONCERNS: 
SECURITY AND PERFORMANCE
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nginx
SELinux limits your exposure to an exploit in a 
container or a bug in a container runtime.
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…and you might not have a password file! 
Use nss_wrapper to provide one.
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Potential performance pitfalls

Hypervisors introduce overhead.   
Use more lightweight isolation  
mechanisms to preserve performance.
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…but measure the  
performance of your  
I/O configuration!
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Quotas mean some ubiquitous techniques can have  
surprising performance impact. Consider in particular  
GC configuration and disk buffer cache use.



Potential performance pitfalls
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If you use a recent build of OpenJDK 8 or 9,  
you have a container-aware JVM!

(If not, set limits manually.)



Container-aware JVM features

java -XX:+UnlockExperimentalVMOptions \ 
    -XX:+UseCGroupMemoryLimitForHeap

Runtime.getRuntime().availableProcessors()

Do the right thing for memory…

…and for CPU!

NEW!



CONCLUSIONS AND WHERE  
TO GO FROM HERE







Architectural takeaways
Many frameworks are already cloud-native 

Use a single compute cluster per app 

Storage lives outside containers and is accessed 
through service interfaces



Correctness takeaways
Arbitrary code isn’t safe just because it’s in a container, 
so don’t run code in containers as root 

Use SELinux to minimize exposure to error and malice 

Avoid ad hoc mechanisms for configuring secrets 

Ephemeral user IDs may confuse your framework



Performance takeaways
Don’t use hypervisors for isolation 

Virtualized networking is probably not a concern 

Optimizations that work well outside of containers may 
have surprising consequences inside containers!



How to get started
Visit https://radanalytics.io for tooling, a containerized 
Spark distribution, and example applications 

Stay in touch!

https://radanalytics.io


willb@redhat.com 
https://chapeau.freevariable.com 
https://radanalytics.io

THANKS!
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