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OUR TALK TODAY

Not your typical AI talk...
The problem to solve
AI and text - how?
"Simple" AI for text
Making it harder
Neural Networks for text
Making it better
Further resources



WHAT IS AI?
AND ML?

AND WHY NOW?



AI - ARTIFICIAL INTELLIGENCE
ML - MACHINE LEARNING

 

(Larry) Tesler's Theorem - "AI is whatever hasn't been done yet."

Which makes... ML what we can do today!



First big "AI Bubble" was mid-1980s, over $1 billion in AI startups that were
generally touted as "expert systems"

Two problems - not enough training data available, computers much more
expensive than the experts they were trying to replace



Moore's Law to the rescue! One million dollars worth of 1985 computing
power costs under one dollar today.

 

Amazon will rent you a machine with 1T of memory for roughly the cost of a
latte per hour.

A 4T memory machine is about $25 / hour, less if reserved!

 

We have a lot more data available to train our ML models on.

 

Open Source libraries and frameworks for AI / ML make it easy to get started,
mean you can focus on your problem, not the system.





YOUR TYPICAL AI / ML DEMO
 
 

IMAGE CLASSIFICATION!
 

It's fun, and it's easy!



DOGS OR CATS?     DOGS



DOGS OR CATS?     KOALA



WHAT ANIMAL?     KANGAROO



WHAT ANIMAL?     WOMBAT

 



WHAT ANIMAL?     ECHIDNA



IMAGE CLASSIFICATION - COOL!
 

(Assuming your humans know what everything is, and can correctly give the
right labels to your training data)

 

BUT MY DATA DOESN'T LOOK LIKE THAT....







IF YOU WANT AN IMAGE CLASSIFICATION TALK
 

Large Scale Landuse Classification of Satellite Imagery

https://berlinbuzzwords.de/18/session/large-scale-landuse-classification-
satellite-imagery

https://berlinbuzzwords.de/18/session/large-scale-landuse-classification-satellite-imagery


IF YOU WANT A NUMERIC MODELLING / FITTING
TALK

 

Real World AirBnB Data Science and Pricing Bot

https://berlinbuzzwords.de/17/session/weekend-project-real-world-airbnb-
data-science-and-pricing-bot

https://berlinbuzzwords.de/17/session/weekend-project-real-world-airbnb-data-science-and-pricing-bot


STILL HERE? LET'S TALK TEXT!



MY PROBLEM - I HAVE LOTS OF DOCUMENTS
 

Including Policies, Procedures, Training Guides, Help Information
Including Questionnaires, Request For Proposals

 

(I have data too, but that's out-of-scope for today!)



I NEED TO DO INEXACT SEARCHING OVER THE
CONTENTS OF ALL THESE DOCUMENTS

 



But I'm not allowed to show you most of those documents....

 

BERLIN BUZZWORDS TALKS TO THE RESCUE!
 

Let's use past Talk Titles and Abstracts as our test data







Partly clustering - what talks are similar to what other talks? What words are
similar to other words?

Partly recommending - people using these search terms also found these
talks relevant

 

It isn't - exact matching

It doesn't have - classification labels, certain answers

It can cope with - people who gave their talks fun / cool titles!



AI / ML FRAMEWORKS DON'T LIKE WORD
DOCUMENTS / SPREADSHEETS / RAW HTML

 

 lets us turn all of these documents into clean, semantically
meaningful HTML

Then split the HTML into chunks (eg document sections, sheets etc), and
finally generate something like JSON

 

For BBuzz talks, used BeautifulSoup to process talk pages into JSON

Apache Tika

https://tika.apache.org/


SAMPLE DATA
{  

  "level": "Beginner",  

  "track": "Scale",  

  "abstract": "Whether we're in the position of a team lead.....", 

  "title": "Building and Scaling a High Performing Development Team by Finding the Facts and Avoidi

  "url": "https://berlinbuzzwords.de/19/session/building-and-scaling-high-performing-development-te

  "speaker": "Will Hayes" 

}, 

{ 

  "level": "Intermediate",  

  "track": "Search",  

  "abstract": "Search is fundamental feature of mobile.de platform and we as Data Team work hard to

  "title": "Architecture of relevancy search at mobile.de",  

  "url": "https://berlinbuzzwords.de/19/session/architecture-relevancy-search-mobilede",  

  "speaker": "Richard Knox" 

}, 

{ 

  "level": "Beginner",  

  "track": "Scale",  

  "abstract": "Non-code contributions, like project and community management, are essential to the 

  "title": "Non-Code contributions: The hidden gem in Open Source Projects",  

  "url": "https://berlinbuzzwords.de/19/session/non-code-contributions-hidden-gem-open-source-proje

  "speaker": "Griselda Cuevas" 

},



WE HAVE OUR TALKS AS JSON
So, we're set right? Just feed the JSON into the AI, and magic happens?

 

Sadly not... ML frameworks don't generally work on Text-in-JSON



ML NEEDS A MATRIX OF NUMERIC VALUES
 

Ideally mostly -1.0 to 1.0 or 0.0 to 1.0

One value for each feature of the thing to learn / predict on
Can be sparse (only a few non-zero values) or dense (mostly non-zero)

More features requires more memory and more CPU, so a tradeoff!

 

How can we turn our text into something like that?



AN ASIDE - SOME TERMINOLOGY
Feature - An input variable, a value for one aspect of the thing to predict. eg

height / weight / 1st RGB channel

Label - The value to be predicted / trained for, eg Dog / Cat / price of house the
features describe

Training - Creating / learning a model to map from the features to the label

Inference - Applying the model to something new to get a prediction

https://developers.google.com/machine-learning/crash-course/framing/ml-
terminology

https://developers.google.com/machine-learning/crash-course/framing/ml-terminology


AN ASIDE - SOME TERMINOLOGY
Regression - A model to predict continuous values. eg "Given the location and

number of bedrooms, what's the likely price of a house"

Classification - A model to predict discrete values. eg "Is this an image of a
Dog, a Cat or a Wombat?"

Clustering - A model to group similar things together. If those are labelled, it's
classification. If those aren't labelled, it's clustering, and relies on

unsupervised machine learning

https://developers.google.com/machine-learning/clustering/overview

https://developers.google.com/machine-learning/clustering/overview


VECTOR SPACE FOR TEXT
First up, we need to break our text down into smaller units. We call this

tokenisation.

The simplest way to do that is to split on whitespace and punctuation, so we
get one token per word.

(We'll cover more advanced things, eg stopwords and stemming, a bit later
on)

 

See any Lucene introduction talk for more!

Lucene in Action or Taming Text have good stuff on this in early chapters too.



VECTOR SPACE FOR TEXT
Next, build up a term dictionary for all the different tokens in our text,

assigning each a unique index

The mouse ran up the clock

The mouse ran down

{ 'the':1, 'mouse':2, 'ran':3, 'up':4, 'clock':5,

'down':6 }

The mouse ran up the clock = [ 1, 2, 3, 4, 5 ]

The mouse ran down = [ 1, 2, 3, 6 ]



VECTOR SPACE FOR TEXT
When one word occurs multiple times, what then? Two easy options

One-Hot encoding - 1 if present, otherwise 0

CBOW Count - how many times across the continuous bag of words each term
occurs. (This looses position information though)

The mouse ran up the clock = [ 2, 1, 1, 1, 1, 0 ]

The mouse ran down = [ 1, 1, 1, 0, 0, 1 ]



TF-IDF
If a document contains a given term a lot, we want to rate that document

higher for that term.

If most documents have a term, it's probably a less interesting thing to look
for, and not that specific. If only a few do, that term is probably more

interesting.

If a document is very long, its counts will naturally be higher than a very short
document's counts, as it'll have more text.

Weigh rare terms higher, common terms lower, across all documents. Within a
document, rate the term higher the more it is used. Weight shorter documents

higher than longer ones.



TF-IDF = TERM FREQUENCY – INVERSE DOCUMENT
FREQUENCY

TF-IDF is the simplest common way to do this, implemented in most ML
libraries you'll come across.

For each talk, tokenise then do CBOW count, then apply TF-IDF. (Generally 1-2
lines of python code!). Gives us, for each talk, a value between 0 and 1 for

each term. A big ML friendly matrix!

 

Other relevancy techniques exist, for more details see
 andhttps://berlinbuzzwords.de/16/session/bm25-demystified

https://2017.berlinbuzzwords.de/17/session/bm25-so-yesterday-modern-
techniques-better-search-relevance

https://berlinbuzzwords.de/16/session/bm25-demystified
https://2017.berlinbuzzwords.de/17/session/bm25-so-yesterday-modern-techniques-better-search-relevance


OUR NEXT CHALLENGE - HOW TO TRAIN THE AI?
We don't know what the right answer is for which talk(s) go with which query.

We don't have the training data, the labels or the scoring function.

For many techniques, we would need to gather that data first! Perhaps by
watching what users did, or sitting down and manually classifying loads of

things.

However, if we just did things on text similarity, would that get us close
enough for now?



FIRST APPROACH - PREDICT ONE TALK,
SUGGEST SIMILAR

1. Build a classification model based on talks

2. Train model on text from talk (title, abstract), using TF-IDF

to make feature vector for each talk

3. Ask model to classify our query

4. Result is talk "most like" our query

5. Return other "similar" talks too, based on text similarity



IN CODE - BUILD THE MODEL
# How to do the TF-IDF conversion 

tf_settings = dict( analyzer="word", ngram_range=(1,2), 

     sublinear_tf=True, min_df=0, stop_words='english' ) 

 

# Build the TF-IDF over all the talks 

# Use title + category + abstract for our text 

tfidf = TfidfVectorizer(**tfs) 

tfidf_matrix = tfidf.fit_transform(talks["learn"]) 

print(tfidf_matrix.shape)   # eg 294 x 30076 

 

# Build the similarities of each talk against every other talk 

# We'll use this for scoring 

tfidf_similarities = linear_kernel(tfidf_matrix, tfidf_matrix) 

 

# Build a model, using Multinomial Naive Bayes 

# Model the text of the talk, to predict the talk's index 

classifier = MultinomialNB() 

model = make_pipeline(tfidf, classifier) 

learn_text = talks["learn"] 

model.fit( list(learn_text), list(learn_text.index) )



IN CODE - USE THE MODEL
query = "apache tika" 

 

# Ask the model to compare our query against every talk, 

#  then pick the talk it thinks is the most similar 

pred_idx = model.predict([query]) 

 

# The prediction should be the index of that talk 

print("Best match - talk %d" % pred_idx) 

 

# Get the pairwise similarity scores of all other talks with that one 

# Filter for ones high enough, and sort so highest scores come first 

similarities = tfidf_similarities.[pred_idx] 

sim_scores = list( [idx,s] for idx,s in enumerate(similarities[0]) if s > 0.01 ) 

sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True) 

 

# Get the scores of the x most similar talks 

sim_scores = sim_scores[0:max_hits] 

 

# Grab those talks 

indexes = [i[0] for i in sim_scores] 

return talks.iloc[indexes]



HOW WELL DOES IT WORK?
Moderately well?

(But we don't have a set of known-good examples, so we can't calculate an
exact score)

 

LET'S TRY A LIVE DEMO!
https://bbuzz2019mlsearch-

gagravarr.notebooks.azure.com/j/notebooks/BuildAndRecommend.ipynb

https://bbuzz2019mlsearch-gagravarr.notebooks.azure.com/j/notebooks/BuildAndRecommend.ipynb


NEXT APPROACH - CLUSTER TALKS FIRST
 

Clustering - Grouping similar, but unlabelled things together

Rather than matching then finding similar things, as we did with the Naive
Bayes approach, what if we clustered first?

K-Means, originally from signal processing, will let us group n things into k
groupings, based on minimising the sum of the squared errors.

But how many clusters should we make?



CLUSTER SIZING
If we have k terms in our TF-IDF, then k clusters with fit with zero error. 1

cluster will be maximum error. Neither helps much...

We need something in-between, where most things are grouped together, and
not too many things are a long way from their neighbours.

 

Various measures can be used to test the effectiveness of the clustering,
Average Silhouette and Gap Statistic methods seem quite popular.

Need to run a few times at each k value (with different init seeds to avoid
local-minima), then compute effectiveness measure, then pick best.



IN CODE - BUILD DIFFERENT CLUSTERS
# Try a range of k-sizes 

krange = range(25, talks.shape[0]-25) 

 

# Try each one with a few different inits, to avoid getting stuck in local-minima 

kms = [] 

for k in krange: 

    tfidf = tfidf_word 

 

    print("Building k-means cluster of size %d" % k) 

    km = KMeans(n_clusters=k, init='k-means++', max_iter=100, n_init=15, verbose=False) 

    km.fit(tfidf.matrix) 

 

    scoff = metrics.silhouette_score(tfidf.matrix, km.labels_, sample_size=1000) 

    print(" - Silhouette Coefficient: %0.4f" % scoff) 

 

    kms.append( [k,scoff] ) 

 

# Which was the best? 

kms.sort(key=lambda x: x[1], reverse=True) 

print("Best K-Means found with a cluster-size (k) of %d" % kms[0][0]) 

print("That had a Silhouette Coefficient: %0.4f" % kms[0][1])





CAN WE SEE HOW IT WORKED?
Our input data had 20-30k dimensions, our cluster has ~50

The human brain struggles with much more than about 4...

A 3D + colour plot is about the limit for most people

Techniques like t-SNE and PCA let us throw away a load of the dimensionality,
whilst still keeping some (but not all) of the info







NEXT APPROACH - CLUSTER TALKS FIRST
 

First, identify our "optimal" cluster size

Next, build a k-means clustering of our talks

Match the text query to a cluster, and find the cluster centre

Now match talks based on similarity to that cluster centre (rather than one
specific talk), possibly boosting slightly talks from our cluster



IN CODE - USING CLUSTERS
# Identify which cluster each talk belongs to 

talk_clusters = km.predict(tfidf.matrix) 

cluster_talks = defaultdict(list) 

for talk_id, cluster_id in enumerate(talk_clusters): 

    cluster_talks[cluster_id].append(talk_id) 

 

# Find best cluster for our query, cluster centre and talks 

query_tf = tfidf.transform([query]) 

cluster_id = int(km.predict(query_tf)) 

 

c_centre_tfidf = km.cluster_centers_[cluster_id] 

c_talk_ids = cluster_talks[cluster_id] 

 

# Compare all talks with this cluster centre, then order 

similarities = linear_kernel(c_centre_tfidf, tfidf.matrix) 

 

tscores = [[i,s] for i,s in enumerate(similarities[0])] 

for idx, score in tscores: 

if idx in c_talk_ids: 

    tscores[idx][1] = score+0.1 

tscores = sorted(tscores, key=lambda x: x[1], reverse=True)



HOW DOES K-MEANS CLUSTERING DO?
Fairly similar? Maybe a tiny bit worse?

(Still don't have a set of known-good examples, so we still can't calculate an
exact score!)

Clusters look to have sensible terms in them, results seem mostly what we'd
expect

 

LET'S TRY ANOTHER LIVE DEMO!
https://bbuzz2019mlsearch-

gagravarr.notebooks.azure.com/j/notebooks/BuildAndRecommend.ipynb

https://bbuzz2019mlsearch-gagravarr.notebooks.azure.com/j/notebooks/BuildAndRecommend.ipynb


ADDING TALK YEAR TO SCORING?
Can we prefer newer talks to older ones?

Can't easily add it as a feature, since we don't have a year at query time, and
we can't teach the model directly what to prefer

We can add it at scoring time, by multiplying scores by year factor. However,
that only applies once we have matched to a talk / cluster.

Ideally need to feed in before we build the model, not a�er.

If we reduce TF-IDF weights slightly for older talks, that will de-boost them
before model is built, but may affect how we cluster.



OUR DATA ISN'T LONG-TERM STATIC
Next year, there'll be another Berlin Buzzwords! That means more talks

(Likewise we're also adding new training data to our onboarding chatbot,
answering more RFPs, building more complex SDTM mapping rules etc)

Let's say we took the time to manually identify the best talks for some query
terms, either explicitly, or via user feedback in a webapp

We boost / prioritise / train based on these "known correct" answers, and it all
looks good!

Then we add more talks, quite possibly even more relevant ones for our
queries, but we our ML won't prioritise them as not on the "good list"



TOKENISATION REVISISTED
We need to turn our text into a stream of chunks to feed into the TF-IDF

Stopwords - Very common words that don't help much with the query, and
can bloat the TF-IDF.

Stemming - Bringing different forms of a word to a common root, eg talk
talks talked talking so they can be matched interchangably

n-grams - word-based means treating several words as one token, eg word
bigrams means word pairs. char-based means splitting word into overlapping

chunks, eg trigrams of hello are hel ell llo

Need to use the same for learning and for querying!

https://developers.google.com/machine-learning/guides/text-
classification/step-3

https://developers.google.com/machine-learning/guides/text-classification/step-3


EMBEDDINGS AND FEATURE EXTRACTION
Even from just a few hundred talks, our TF-IDF had a lot different terms in it.

However, most talks only use a subset of those terms, so lots of TF-IDF matrix
values are 0. Our TF-IDF is sparse

Bayse and K-Means, amongst others, are fine with sparse matricies. Other
techniques, eg Neural Networks, need dense matricies, where most values are

non-zero

Using stop-words and stemming helps a little bit here, but we need a few
more orders of magnitude change!

 
https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-

extraction
https://developers.google.com/machine-learning/crash-

course/embeddings/obtaining-embeddings

https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction
https://developers.google.com/machine-learning/crash-course/embeddings/obtaining-embeddings


EMBEDDINGS AND FEATURE EXTRACTION
We need to extract some new features from our existing data, which have

much lower dimensionality.

Instead of 20k-30k terms, we want more like 50-250

Our per-talk matrix of features will then be smaller and denser (fewer
features/dimensions, more non-zero values)

This new dense set of features is known as an embedding

As well as being needed before we can use Neural Networks on our kind of
input, they also help with visualisations of you data

Our k-means clusters are a form of term-embedding



WORD2VEC
Word2Vec was originally developed by Google. It's a series of models that

produce word embeddings.

Based on shallow, 2-layer neural networks, trained to reconstruct linguistic
contexts of words

Produces a vector space, typically reduced down to a few hundred
dimensions, where words with similar contexts are located nearby.

With enough data, model can be used to make guesses on a word's meaning
and association, e.g. “man” is to “boy” what “woman” is to “girl”





NEURAL NETWORKS
System built up with a series of layers, with data flowing one way

Input layer accepts your features / embeddings

Output layer constrained to give answer you expect, get "cat or dog"

Potentially many hidden layers between, which do the
processing

Training done to build the nodes, the weights of the
links between them, if you should add or remove

nodes in a layer etc



TESTING, CROSS VALIDATION
When we know what our model should be predicting for a set of input data (eg

what the human-provided labels are for a bunch of input features), we need
to measure how well the model does!

Train on one set of known-data, then predict against another set, and see how
close the predictions came to what we know are the answers

Our model might do too well, if it ends up learning some specific bits of our
training data, this is over-fitting

Generally we want a train / test split, and maybe validate too, which should all
be representative of the data we'll predict with

If we don't have much data available, we can train the model several times
with different segments as train/test, and ensure always similar accuracy



HYPER-PARAMETERS AND TUNING
A hyper-parameter is anything we tune / select / change in our ML, that's

independant of the data and of the features selected

eg k-means, that includes the range of clusters to try fitting to

O�en relate to seeds, steps, number of clusters / layers, how much to change
between iterations, and how much to leave alone

Pick the wrong parameters, and your model might get stuck in a local minima
a long way off the best answer, or might take ages to converge, or may never

even complete!

Along with identifying appropriate features, and cleaning your data, selecting
appropriate hyper-parameters is a tough bit of data science



ERRORS
For a binary classification, there are 4 possible states: True Positive, True

Negative, False Positive and False Negative

What to aim for depends on your problem, and the distribution of your data

eg if detecting cancer, is it better to give someone the all-clear when they
actually have cancer (false negative)? Or to send them for treatment that they

don't need (false positive)

Precision is ratio of correct values in our results, recall is ratio correct-found
to correct-all. Confidence is how well the model thinks it did.



BIASES
If you input data is biased, the model will be biased

If you try to hide some biases from your model, it might still find them from
other features.

eg hide Gender, but leave in Name. eg hide Race, but leave in postal code /
zipcode, or first / elementary school

Be aware of your data biases, be aware of how people will use your model, try
to re-weight your models to counteract biases

Be aware of implicit biases in your data, and impact if model is fed data from
somewhere else / something else

Good intro yesterday - https://berlinbuzzwords.de/19/session/bias-nlp-101

https://berlinbuzzwords.de/19/session/bias-nlp-101


NLP - NATURAL LANGUAGE PROCESSING
Family of AI/ML related (and o�en powered) techniques for understanding

text

NER Named Entity Recognition - identify proper names in text, eg people /
places / organisations

POS Part-of-speech tagging - figure out which words / word sequences are
nouns / verbs / adjectives

Sentiment analysis - is the text positive / negative / neutral / etc on the topic it
relates to

Plus stemming, word and sentence break identification etc



DETECTING ANSWERS IN TEXT
So far, we've focused on matching a question to some relevant material,

rather than a single specific answer

However, if the text has a simple answer embedded in it, potentially NLP
could help us pull that out to display / highlight

DrQA - originally developed by Facebook is an ML + IR system for answering
factoid questions. Demo is trained on Wikipedia pages, but can be retrained

for your documents too!

https://github.com/facebookresearch/DrQA

https://berlinbuzzwords.de/19/session/building-enterprise-natural-
language-search-engine-elasticsearch-and-facebooks-drqa

https://github.com/facebookresearch/DrQA
https://berlinbuzzwords.de/19/session/building-enterprise-natural-language-search-engine-elasticsearch-and-facebooks-drqa


WOULD LUCENE / ELASTIC HAVE DONE
BETTER?

Out of the box, and with our data sizes - no

If we'd spent some time configuring the similarity and clustering features,
could probably come pretty close

If we had a lot more data, Lucene / SOLR / Elastic would win - most of the AI
techniques need the whole model in memory (Lucene can efficiently pages

bits in from disk), and Lucene has lower CPU needs at index/predict

But as an AI / ML learning exercise, a chance to put that into action on a few
production projects, and to aid planning of our next data-driven ML projects,

it was invaluable!



TRYING OUT AI / ML YOURSELF
Basically everything is open source! Installation and setup isn't always the

easiest though...

Jupyter - an open-source web application that allows you to create and share
documents that contain live code, equations, visualizations and narrative

text. (There's also Apache Zeppelin!)

There are several free hosted Jupyter instances, which come "batteries
included" with all the libraries you need to get started!

Azure Notebooks - 

Google Colaboratory - 

https://notebooks.azure.com/

https://colab.research.google.com/

https://notebooks.azure.com/
https://colab.research.google.com/


FURTHER LEARNING RESOURCES - COURSES
Stanford University

Google

Amazon

https://www.coursera.org/learn/machine-learning

https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/guides/rules-of-ml/
https://developers.google.com/machine-learning/guides/text-
classification/

https://aws.amazon.com/training/learning-paths/machine-learning/

https://www.coursera.org/learn/machine-learning
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/guides/rules-of-ml/
https://developers.google.com/machine-learning/guides/text-classification/
https://aws.amazon.com/training/learning-paths/machine-learning/


FURTHER LEARNING RESOURCES - COURSES
Microso�

Jeremy Howard / Fast.AI

O'Reilly Safari has loads!

Others

https://docs.microso�.com/en-us/azure/machine-learning/

http://course18.fast.ai/ml
http://course18.fast.ai/part2.html

https://scikit-learn.org/stable/tutorial/basic/tutorial.html
https://scipy-lectures.org/

https://docs.microsoft.com/en-us/azure/machine-learning/
http://course18.fast.ai/ml
http://course18.fast.ai/part2.html
https://scikit-learn.org/stable/tutorial/basic/tutorial.html
https://scipy-lectures.org/


FURTHER LEARNING RESOURCES - OTHERS

DrQA  

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://www.ben-evans.com/benedictevans/2019/4/15/notes-on-ai-bias
https://www.graphcore.ai/posts/removing-bias-from-machine-learning

https://arxiv.org/abs/1704.00051

https://github.com/facebookresearch/DrQA

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://www.ben-evans.com/benedictevans/2019/4/15/notes-on-ai-bias
https://www.graphcore.ai/posts/removing-bias-from-machine-learning
https://arxiv.org/abs/1704.00051
https://github.com/facebookresearch/DrQA


FURTHER LEARNING RESOURCES - BOOKS
Taming Text - 

Introduction to Information Retrieval - 

Loads available from Manning

And from O'Reilly

https://www.manning.com/books/taming-text

https://nlp.stanford.edu/IR-book/

https://www.manning.com/books/taming-text
https://nlp.stanford.edu/IR-book/


ANY QUESTIONS?


