Python, Java, or Go

It's Your Choice with Apache Beam

Who are we?

@stadtlegende

Maximilian Michels
Software Engineer / Consultant

Apache Beam / Apache Flink
PMC / Committer

@iemejia
Ismaél Mejia
Software Engineer @ Talend Inc

Apache Beam / Apache Avro
PMC / Committer

What is Apache Beam?

What is Apache Beam?

¢ Apache open-source project

Parallel/distributed data processing

Unified programming model for batch and streaming
e Portable execution engine of your choice ("Uber API")
¢ Programming language of your choice*

Apache Beam

The Vision
B =

ﬁ , Direct Apache
Samza

Translate
Apache Flink .
>

Google Cloud Dataflow

Runners ‘ Spork
Hazelcast JET Apache Spark

é Apache Apex
.

== H Nemo Apache Gearpump

Apache Nemo (incubating)

Execution Engines

Write

L\

The API

H WO DN =

IN TRANSFORM PCOLLECTION TRANSFORM

PCOLLECTION

ouT

PIPELINE

Pipeline p = Pipeline.create(options)

PCollection pCol1l = p.apply(transform).apply(..)...
PCollection pcol2 = pCol1l.apply(transform)
p.run()

Transforms

PRIMITIVE
TRANSFORMS
e Transforms can be primitive or composite ParDo
e Composite transforms expand to primitive
e Small set of primitive transforms
Small set of p s _ GroupByKey
e Runners can support specialized translation
of composite transforms,but don't have to _ _
AssignWindows

Flatten

Core "primitive" Transforms

ParDo

input -> output

"tO" _> Kv<"t0",
llbell _> KV<"be"’
llorll _> Kv<llorll,

"not"-> KV<"not",

lltoll _> Kv<"t0",
llbell _> Kv<llbell’

"Map/Reduce Phase"

1>
1>
1>
1>
1>
1>

GroupByKey

KV<k, v>.. -> KV<k, [v..]>

Kv<"to", [1,1]>
-~ KV<"be" [1,1]>

7 Kv<"or", [1]>

KV<"not",[1 E

"Shuffle Phase"

Wordcount - Raw version

pipeline
.apply(Create.of("to", "be", "or", "not", "to", "be"))
.apply(ParDo.of(
new DoFn<String, KV<String, Integer>>() {
@ProcessElement
public void processElement(ProcessContext ctx) {
ctx.output(KV.of (ctx.element(), 1));
}
1)
.apply(GroupByKey.create())
.apply(ParDo.of(
new DoFn<KV<String, Iterable<Integer>>, KV<String, Long>>() {
@ProcessElement
public void processElement(ProcessContext ctx) {
long count = 0;
for (Integer wordCount : ctx.element().getValue()) {
count += wordCount;
}
ctx.output(KV.of (ctx.element().getKey(), count));
}
1)

EXCUSE ME,
THAT WAS UGLY AS HELL

Wordcount — Composite Transforms

pipeline
.apply(Create.of("to", "be", "or", "not", "to", "be"))
.apply(MapElements.via(
new SimpleFunction<String, KV<String, Integer>>() {
@0Override
public KV<String, Integer> apply(String input) {
return KV.of (input, 1);

}

1))
.apply(Sum.integersPerKey());

— Composite

Transforms

Wordcount - More Composite Transforms

pipeline
.apply(Create.of("to", "be", "or", "not", "to", "be"))
.apply(Count.perElement());

Composite
Transforms

Python to the Rescue

pipeline
| beam.Create(['to', 'be', 'or', 'not', 'to', 'be'l])
| beam.Map(lambda word: (word, 1))
| beam.GroupByKey/()

| beam.Map(lambda kv: (kv[@], sum(kv[1])))

Python to the Rescue

pipeline
| beam.Create(['to', 'be', 'or', 'not', 'to', 'be'])
| beam.Map(lambda word: (word, 1))
| beam.CombinePerKey(sum)

There is so much more on Beam

10 transforms — produce PCollections of timestamped elements and a watermark.

Filesystems Databases Messaging
Amazon S3 Amazon DynamoDB Amazon Kinesis
Apache HDFS Apache Cassandra Amazon SNS / SQS
Google Cloud Storage Apache Hadoop InputFormat Apache Kafka
Local Filesystems Apache HBase AMQP
Apache Hive (HCatalog) Google Cloud Pub/Sub
File Formats Apache Kudu JMS
Apache Solr MQTT
Text Elasticsearch RabbitMQ
Avro Google BigQuery
Parquet Google Bigtable
TFRecord Google Datastore
Xml Google Spanner
Tika JDBC
MongoDB

Redis

There is so much more on Beam

e More transforms - Flatten/Combine/Partition/CoGroupByKey (Join)
e Side inputs — global view of a PCollection used for broadcast / joins.

Latency / Correctness

e Window - reassign elements to zero or more windows; may be data-dependent.
e Triggers — user flow control based on window, watermark, element count, lateness.

e State & Timers — cross-element data storage and callbacks enable complex
operations

What Does Portability Mean?

The Vision

= Write

Runners

Direct Apache
Samza

¢

Translate Apache Flink .
>

Google Cloud Dataflow

Spark’
Apache Spark
Apache Apex e

Apache Gearpump
Hazelcast JET

Execution Engines

Portability

Engine Portability

¢ Runners can translate a Beam
pipeline for any of these
execution engines

Language Portability

e Beam pipeline can be generated
from any of these language

Java b 4

Engine Portability

1. Write your Pipeline
2. Set the Runner

options.setRunner(FlinkRunner.class);
or
--runner=FlinkRunner / --runner=SparkRunner

3. Run!

p.run();

Portability

Engine Portability Language Portability
¢ Runners can translate a Beam e Beam pipeline can be generated
pipeline for any of these from any of these language

execution engines

»
M s e

Why Use Another Language?

e Syntax / Expressiveness N
| YOU CAN/HAVE ALL THE POWER OF JAVA
e Code reuse | ~ WITHOUT ITS VERBOSITY, .5,

e Ecosystem: Libraries, Tools (!)
e Communities (Yes!)

Beam without Language-Portability

S,
—

Java

L\

Write Pipeline

> .
2

Runners

ronsate 2 @
ranslate »\d

spak’ o

= Wait, what?!

SDKs

Execution Engines

Beam with Language-Portability

S,
—

Java

L\

Write Pipeline

Translate

&]
= &
é language-portability

framework

Runners

SDKs

Execution Engines

How Does It Work?

Engine Por)(t%ability

Cloud
Dataflow

Primitive Transforms

ParDo

GroupByKey

Assign Windows

Flatten

Sources

Language Portability

X

'%@z%'

Cloud
Dataflow

/%\

Cloud
Dataflow

Language Portability

g

Cloud
Dataflow

Cloud
Dataflow

Language Portability

: a%

X
V
= -

Cloud
Dataflow

Cloud
Dataflow

Engine Portability | language-specific

Backend (e.g. Flink)

All components are tight to a single language

Language Portability Architecture ([language-specifi

- I

Runner API

Backend (e.g. Flink)

From Pipeline to Execution

1.

Pipeline is serialized to the ProtoBuf Runner API

Protobuf message is send over via the Job API

Staging prepares execution dependencies for Fn API
Job Server fuses the pipeline and calls the actual Runner

Runner translates and submits to its execution engine

Runner API

Job API

‘ Translate

From Pipeline to Execution / continued

6. Execution engine executes translated pipeline

7. SDK harness is utilized whenever necessary

8. [Execution status is reported back to the Job Server

Backend (e.g. Flink)

R

v Fn API

Portable Runner / Job Server S SRTABLE RUNNER

A A
e Each SDK has an additional Portable Runner % g
e Portable Runner takes care of talking to the 5 3 if
JobService > o
e Each backend has its own submission endpoint 4 \ A |
. . JOB SERVER
e (Consistent language-independent way for
pipeline submission and monitoring JOB SERVICE

e Stage files for SDK harness
ARTIFACT SERVICE

Pipeline Fusion

e SDK Harness environment comes at a cost

e Serialization step before and after
processing with SDK harness

e User defined functions should be chained and
share the same environment

==

FLINK EXECUTABLE STAGE

SDK HarneSS JOB BUNDLE FACTORY
* \ STAGE BUNDLE FACTORY
ENVIRONMENT FACTORY *

REMOTE BUNDLE

e SDK Harness runs

%, A A A A
¢ in a Docker container (repository can be ’%Q :

specified)
YYVYYY

SDK HARNESS

Control
Data
State

Progress

Logging

¢ in a dedicated process (process-based
execution)

e embedded (only works if SDK and
Runner share the same language) i

Primitive Transforms

e Did we have to rewrite the old Runners?
Good news, we can re-use most of the code

e There are, however, four different translators
for the Flink Runner
e | egacy Batch/Streaming
e Portable Batch/Streaming

And three different translators for Spark runner
e |egacy Batch/Streaming
e Portable Batch

Transforms

Classic Portable

ParDo ExecutableStage

GroupByKey

Assign Windows | ExecutableStage

Flatten

Sources Impulse + SDF

File-based

The 10 Problem Apache Hors

Google Cloud Storage
Local Filesystems
AvrolO
TextlO
TFRecordlO
XmllO
TikalO
ParquetlO

Messaging
Amazon Kinesis

e Java SDK has rich set of IO connectors, e.g. FilelO, KafkalO, Amazon SNS / S

. . AMQP
PubSublO, JDBC, Cassandra, Redis, ElasticsearchlO, ... ool Fiche Katka
JMS
MQTT

e Python SDK has replicated parts of it, i.e. FilelO Databases

Amazon DynamoDB
Apache Cassandra

e Are we going to replicate all the others? Apache Hadoop InputFormat

Apache HBase
* Solution: Use cross-language pipelines! Apache Hive (Catalog)
pache Kudu
Apache Solr
Elasticsearch
Google BigQuery
Google Bigtable
Google Datastore
Google Spanner
JDBC
MongoDB
Redis

Cross-Language Pipelines

pipeline
ReadFromKafk
| eaco;::m:r zgnfi ={ ExternalTransform(

'autc_> offs:; reset' : 'latest’ Expand "beam:external:java:kafka:read:v1',
: .) C —_— ExternalConfigurationPayload(
bootstrap.servers ... ' consumer_config' : -

s "topics': ..

topics=["myTopic"]))

2

ExpansionRequest

ExpansionResponse

Bwld External
KafkaIO.buildExternal(ExternalConfiguration config)
S, @

Java

Cross-Language with Multiple Environments

oot R
>
-

Runner API

Execution Engine (e.g. Flink)

VFn AP

Outlook

Status of Portability

Engine Portability Language Portability

/ . SdMmza
L,
spark’ % @& ‘

g2
../A./

‘

* See Robert Burke's talk directly after this talk

Portability Support Matrix

Flink (master) in: tions Dataflow
Java Python Go Java Python
FEATURE Batch Streaming Batch Streaming Batch Streaming Batch Streaming Batch Streaming Streaming
Impulse
ParDo
w/ side input
w/ multiple output
w/ user state BEAM-2902/BEA BEAM-2902/BEA BEAM-2902/BEA BEAM-2902/B!
w/ user timers
w/ user metrics
Flatten
w/ explicit flatten
Combine
w/ first-class rep
w/ lifting BEAM-3711 BEAM-3711
SDF
w/ liquid sharding
GBK
CoGBK
Windowlnto
w/ sessions
w/ custom windowfn
EXAMPLE Streaming Streaming Streaming Batch Streaming Batch Streaming Streaming
WordCap
WordCount
w/ write to Sink
w/ write to GCS

https://s.apache.org/apache-beam-portability-support-table

Limitations and Pending Work

e Implement all Fn API in all Runners
e Splittable DoFn
e Improve Go support
e Concurrency model for the SDK harness
e Performance tuning
. Publish Docker Images
. Artifact Staging in cross-language pipelines

Getting Started

Getting Started With the Python SDK

1. Prerequisite

a. Setup virtual env
virtualenv env && source env/bin/activate

b. Install Beam SDK

pip install apache_beam # if you are on a release
if you want to use the latest master version
./gradlew :sdks:python:python:sdist

cd sdks/python/build

python setup.py install

c. Build SDK Harness Container
./gradlew :sdks:python:container:docker

d. Start JobServer

./gradlew :runners:flink:1.8:job-server:runShadow
-PflinkMasterUrl=1localhost:8681 # Add if you want to submit to a Flink cluster

See also https://beam.apache.org/contribute/portability/

https://beam.apache.org/contribute/portability/

Getting Started With the Python SDK

2. Develop your Beam pipeline
Run with Direct Runner (testing)

4. Run with Portable Runner

required args
--runner=PortableRunner --job_endpoint=1localhost:8099

w

other args

--streaming

--parallelism=4
--<option_arg>=<option_value>

Refs.
https://beam.apache.org/documentation/runners/flink/
https://beam.apache.org/documentation/runners/spark/

https://beam.apache.org/documentation/runners/flink/
https://beam.apache.org/documentation/runners/spark/

Thank You!

e Visit beam.apache.ora/contribute/portability/

e Subscribe to the mailing lists:

user-subscribe@beam.apache.org

dev-subscribe@beam.apache.org
e Join the ASF Slack channel #beam-portability

¥ Follow @ApacheBeam @stadtlegende @iemeijia

e Attend Beam Summit Europe June 19-20 (!)

https://beam.apache.org/contribute/portability/
mailto:user-subscribe@beam.apache.org
mailto:dev-subscribe@beam.apache.org

References

https://s.apache.org/beam-runner-api
https://s.apache.org/beam-runner-api-combine-model
https://s.apache.org/beam-fn-api
https://s.apache.org/beam-fn-api-processing-a-bundle
https://s.apache.org/beam-fn-state-api-and-bundle-processing
https://s.apache.org/beam-fn-api-send-and-receive-data

https://s.apache.org/beam-fn-api-container-contract
https://s.apache.org/beam-portability-timers

https://s.apache.org/beam-runner-api
https://s.apache.org/beam-runner-api-combine-model
https://s.apache.org/beam-fn-api
https://s.apache.org/beam-fn-api-processing-a-bundle
https://s.apache.org/beam-fn-state-api-and-bundle-processing
https://s.apache.org/beam-fn-api-send-and-receive-data
https://s.apache.org/beam-fn-api-container-contract
https://s.apache.org/beam-portability-timers

