

When DataFrames fail,

resort to mapPartitions
aka “What to do when Spark can’t handle it”

Berlin Buzzwords, June 2018

Matija Gobec

matija.gobec@smartcat.io

@mad_max0204

Why this talk?

Complex problem with an easy solution

(or not)

2k+ lines of resulting dataframe tree schema

Logically correct vs Correct

Logically correct solution

● Data analysis process (data exploration)

● Get to the correct output ASAP

● Validate result

● Run on subset (if possible)

○ Quick iterations

○ Tends to eliminate data issues

Correct solution

● Correct result

● Repeatable performance

● Scalable and optimized

● Proper data handling

Let’s dig in

spark.read.jdbc

What in the world?

Specify columnName for proper distribution

numPartitions defines parallelism

Query for bounds (upper and lower)

val df = (spark.read.jdbc(url=jdbcUrl,

table="some_table",

columnName="some_column",

lowerBound=1L,

upperBound=100000L,

numPartitions=100,

connectionProperties=connectionProperties))

(Re)partitioning

df.repartition(100) - repartition to a number of partitions

df.repartition(100, col("some_column")) - repartition and split on column

df.coalesce(10) - coalesce (narrow dependency)

(Re)partitioning

Partition by a join field

Repartition is expensive but can help down the road

coalesce vs repartition

HashPartitioner

Number of partitions divisible by available cores

(usually from 2 to 10 x cores)

Data locality

PROCESS_LOCAL - data is in the same JVM

NODE_LOCAL - data is on the same node (HDFS, local executor)

RACK_LOCAL, ANY - data is not on the executors

NO_PREF - no locality preference

Data locality

Work distribution

Work distribution

Broadcasting variables

Keeps a copy of data on each worker

Reduces the size of a serialized task as data is on the worker already

Optimizes join operations

Checkpointing

Truncate lineage graph

Reliable - HDFS storage (sc.setCheckpointDir)

Local - node local temp storage

Metrics

Spark WebUI is your friend

Use Spark History Server

JSON metrics over REST API

Collect JMX metrics (Dropwizard)

Event timeline

Storage tab

RDD storage details

But what if all fails?

What is Apache Spark?

Let’s use it

Spark is a distributed computing framework

Spark provides resource management

Spark provides controllable work distribution

Spark is highly configurable

Why not?

MapPartitions function

/**

* Return a new RDD by applying a function to each partition of this RDD.

*

* `preservesPartitioning` indicates whether the input function preserves the partitioner, which

* should be `false` unless this is a pair RDD and the input function doesn't modify the keys.

*/

def mapPartitions[U: ClassTag](

f: Iterator[T] => Iterator[U],

preservesPartitioning: Boolean = false): RDD[U]

MapPartitions function - indexed

/**

* Return a new RDD by applying a function to each partition of this RDD, while tracking the index

* of the original partition.

*

* `preservesPartitioning` indicates whether the input function preserves the partitioner, which

* should be `false` unless this is a pair RDD and the input function doesn't modify the keys.

*/

def mapPartitionsWithIndex[U: ClassTag](

f: (Int, Iterator[T]) => Iterator[U],

preservesPartitioning: Boolean = false): RDD[U]

MapPartitions example

def mapFunction(args): Iterator[Row] => Iterator[Row] = iterator => {

// Processing based on the partition data

// Example:

// val ids = iterator.toList.map(row => row.getInt(0))

// Processor.doWork(ids)

iterator

}

Other usages

Applying custom processing code

Running ML pipeline

Using third party libraries

Misc

How about them numbers?

Results

Processing time dropped from ~96 hours to ~3.5hours (28 times)

Adding new entities doesn’t significantly impact complexity/performance

Additional control which we leveraged down the road

We managed to use all the resources

We managed to use all the resources

Raised code complexity

PROs

CONs

Q&A

Matija Gobec

matija.gobec@smartcat.io

@mad_max0204

Thank you

