criteol..

Profiling and optimizing a
Spark job with Babar

BENOIT HANOTTE, BERLIN BUZZWORDS 2018

criteo “Connecting shoppers to the
things they need and love.”

criteol..

500+

criteol..

criteol..

Context

Teams moving from MapReduce-based frameworks to newer alternatives

Spark very popular, advertises faster & more efficient processing

Speed

Run workloads 100x faster.

w
o

Apache Spark achieves high performance for both batch and streaming

data, using a state-of-the-art DAG scheduler, a query optimizer, and a
physical execution engine.

Running time (s)

0.9

o

Logistic regression in Hadoop and Spark

Source: http://spark.apache.org (June 2018)

http://spark.apache.org/

ontext

But this is not what we experienced...

Duration ~ Tasks: Succeeded/TotaI

ExecutorLostFailure (executor 19 exited caused by one of the running tasks) Reason: Container killed by
YARN for exceeding memory limits. 17.1 GB of 17 GB physical memory used. Consider boosting
spark.yarn.executor.memoryOverhead.

Jobs were unstable, teams were solving it by allocating too much resources to their jobs.

criteol..

Profiler for distributed applications on Hadoop

Works with any JVM framework

R

wcaldmg Spark

Easy to get started, no infrastructure required
Made for distributed applications

Works on 10000+ containers apps

Exports ready-to-use graphs as HTML file

O https://github.com/criteo/babar

https://github.com/criteo/babar

YARN Container YARN Container Babar agent instruments the executor JVM,
logs metrics to local FS.

Babar agent Babar agent

Agent can be distributed with spark-submit (no
Executor JVM Executor JVM installation).

Metrics from:
- JVM
- Stack traces

YARN Container - /proc/

Babar agent

Executor JVM

YARN Container

Babar agent

Executor JVM

YARN Container

Babar agent

Executor JVM

YARN Container

Babar agent

Executor JVM

On job complete, YARN aggregates logs
from all executors into single file on HDFS.

YARN Container

Babar agent

Executor JVM

YARN Container

Babar agent

Executor JVM

YARN Container

Babar agent

Executor JVM

Babar processor scans log file and aggregates

metrics into HTML file.

Babar
processor

HTML report

® ® 3 Babar-report X Benoit

< e, QA wl &

Babar Containers Memory CPU GC 1/O Traces

Running containers

containers —()~ containers

50

40

30

20

10
0
11:58 12:00 12:05 12:07
06-06 06-06 06-06 06-06

The graph above shows the number of running containers at any given time for your application.

Below you will find the list of all of the application containers, along with their duration and a visual represerntation of the time they have been
running over total application run-time.

« < > » Per page 100 2

Container Duration Timeline
24-8a-07-77-67-e0_IN2FXCvP 8:53

24-8a-07-bb-be-00 mremaarD 8:52 |

24-8a-07-bb-e2-90_D9jcq9xa 8:52

criteol..

24-8a-07-bb-e2-00_DoyBHk3q 8:51

criteol..

o
<

® Y Babar-report X

Benoit

c | o B - | ’ Q %|a 8

Babar Containers Memory CPU GC /O Traces

Total memory shows the sum of the memory usage over all containers
y . 2/ g . Nl Max memory
Max memory shows the maximum memory usage for any container

Total used memory
-OrBtotal reserved —)— total RSS memory —()- total corrected RSS memory (- total used JVM heap total used JVM off-heap
400,000

300,000
200,000

100,000

0

11:58 12:00 12:05 12:07
06-06 06-06 06-06 06-06

This graph shows the total memory used by all of your application's running containers at any given time.
Reserved memory is the amount of memory reserved on the infrastructure.

RSS memory is the size of the memory pages that are loaded in the physical memory (RAM) for your containers process-tree (inclusing

non JVM programs).

Total committed memory
-O- todageserved —()- total RSS memory —()- total corrected RSS memory () total committed JVM heap total committed JVM off-heap

criteol..

® ® 3 Babar-report X Benoit

- C Q{‘(V"“u@

Babar Containers Memory CPU GC 1I/O Traces

JVM shows the memory usage as reported by the JVM instrumentation using the JVMProfiler. VM
ProcFS shows the memory usage as reported by the filesystem using the ProcFSProfiler.

JVM CPU usage
usage max load —()— median load
B

0.8 1
0.6
0.4 1

0.2+

. mdimi e, . A - .

11:58 12:00 12:05 12:07
06-06 06-06 06-06 06-06

This graph shows the median and max CPU usage as reported by the JVM instrumentation over all the containers.
It only reports the JVM CPU usage and will ignore children processes spawned by the java application.

Host CPU usage

usage max load -~ median load

N 4 .

® ® [Babar-report X Benoit
« ¢ a v u g

Babar Containers Memory CPU GC /O Traces

Minor & Major median GC ratio

%time max GC ratio -~ median major GC ratio - - median minor GC ratio
1 -
0.8
0.6
0.4
0.2 ' ‘ I .
0
11:58 12:00 12:05 12:07
06-06 06-06 06-06 06-06

This graph shows the median ratio of wall-clock time spent doing minor and major garbage collections in the JVMs over all containers.
Minor GC only clean the young generation, while Major GC cleans both the young and old ones. The major GC should be much less
frequent that the minor one, otherwise it could indicate that too many short lived-objects are promototed to the old generation. If this is
the case, you may want to resize the generations and make sure that no humongous object uses most of the old generation (which could
trigger frequent major GC).

You can tune the size of the generations either by specifying the -XX:NewRatio (integer value only) parameter or with the -
XX:NewSize and -XX:MaxNewSize parameters for finer-grained tuning.

Accumulated JVM CPU time and GC CPU time
sec accumulated JVM CPU time —()— accumulated GC CPU time

. 100,000
criteol.. so.ooo:|

® ® 3 Babar-report X

< C Q | @

Babar Containers Memory CPU GC 1/O Traces

Process tree peak bytes read / sec
bytes/sec max bytes read/sec —(- median bytes read/sec median disk bytes read/sec
400,000 -

300,000
200,000

100,000 -

0 | 1 1 Al
11:58 12:00 12:05 12:07
06-06 06-06 06-06 06-06

This graph shows the peak bandwidth used to read data from disk |/O by the entire process-tree as reported by the
file.

Bytes read/sec show the bandwidth for all read operations, while disk bytes read/sec only shows the bandwidth for I/O operations
that acutally read data from the block storage layer (i.e. excluding pagecache).

Process tree Accumulated bytes read
bytes -~ bytes read disk bytes read
150,000,000,000 —

120,000,000,000 -

90,000,000,000 -

criteol..

60,000,000,000

Benoit

P
4

Benoit

Q w|a §:

/O Traces

Memory CPU GC

Containers
eg: org.project.MyClass.myMethod

Search for method-prefixes (commas-spearated)

eve [% Babar-report

Babar

e _
.
:
:
- . -
-. c.
2
-. -. -
)
I
! [T
. =
EEE ==
L j=:1
HE BEs
H
p ;
_
|
f

java.io.Obj
java.io.Obj

java.lang.re

Loy
O
2]
g

J

java.util.concurrent. ThreadPoolExecutor$Worker.run:624
java.util.concurrent.ThreadPoolExecutor.runWorker:1149

java.lang.Thread.run:748

criteol..

\phs & CPU time

Visualize expensive code paths from sampled stack traces

100% CPU time

AQO{

CPU time

A

~40% CPU time

root
java.lang.Thread.run:748
java.util.concurrent.ThreadPoolExecutor$Worker.run:624
java.util.concurrent.ThreadPoolExecutor.runWorker: 1149
org.apache.spark.executor.Executor$TaskRunner.run:338
org.apache.spark.scheduler.Task.run:108

o
[
i
i
I
I
1
Y} java.io.ObjectOutputStream.writeObje... 11
J java.io.ObjectOutputSt... java.i... i
lorg.apachess... Jjava.io.ObjectStreamCl... java.i... i
lorg:ap... | djava.lang.reflect. Metho... java.i... i
orgap.. javal.. | i
| scala.c... immmiiime i
| | ogap.. I
i I oga.. I
i N AN Wi i
i N Wi I
i] B | 1)
H Al B | ¥ 1)
0 b i || 1!
i 1]] 1l
. o 1|

N [] | I

1 0o i

N : ct ke for. g0 10 I

1 Bscala.collection.mutable. ArrayBuffer.foreach:488 | | I

N scala.collection.mutable.ResizableArray$class.. - |

1 scala.collection.TraversableLike$WithFilter$$.. 1

K org.apache.spark.rdd.CoGroupedRDD$$ano.. I

7 org.apache.spark.rdd.CoGroupedRDD$$ano.. :

read : sort serialize deserialize g Join 1 I write

In practice: Flame Graphs & CPU time

Shuffle is expensive
Not network, not 10O, but serialization!

User & Kernel process tree CPU load
max load —()— median user mode CPU load -()~ median kernel mode CPU load

In practice: Flame Graphs & CPU time

Pick models accordingly

- Serialization/deserialization efficiency often more important than memory footprint
- Use specialized serializers (can allow further optimizations by Spark)

In this example join: -40% CPU time!

Models also impact cost of size estimation
Can be very expensive (we have seen up to 30% CPU time)

java.io.ObjectOutputS
java.io.ObjectOutputS
java.io.ObjectOutputS
java.io.ObjectOutputS
java.io.ObjectOutputS

In practice: Memory

Understanding the memory usage
- JVM heap & off-heap memory used

- Physical memory used (RSS memory)

- Reserved memory

Total used memory
MB - total reserved —()- total RSS memory —()- total corrected RSS memory (- total used JVM heap total used JVM off-heap
400,000 -

300,000

200,000 -

100,000

0

11:58 12:00 12:05 12:07
06-06 06-06 06-06 06-06

criteol..

In practice: Memory

Dimensioning and tuning memory
Setting executor & container memory to accommodate the largest executor:

- Avoiding OutOfMemoryErrors (spark.executor.memory)

Max used memory for any container

MB ~(- max used JVM heap max used JVM off-heap

7,000
6,000 -

11:58 12:00 12:05 12:07
06-06 06-06 06-06 06-06

criteol..

In practice: Memory

Dimensioning and tuning memory
Setting executor & container memory to accommodate the largest executor:

- Avoiding OutOfMemoryErrors (spark.executor.memory)

Max used memory for any container
—O~ max RSS memory —()- max corrected RSS memory (- max used JVM heap max used JVM off-heap

11:58 12:00 12:05 12:07
06-06 06-06 06-06 06-06

criteol..

In practice: Memory

Dimensioning and tuning memory

Setting executor & container memory to accommodate the largest executor:

- Avoiding OutOfMemoryErrors (spark.executor.memory)

- Avoiding YARN killing containers for exceeding reserved memory (spark.yarn.executor.memoryOverhead)

Max used memory for any container
MB O maxreserved —()— max RSS memory —(O- max corrected RSS memory (- max used JVM heap max used JVM off-heap

7,000
6,000
5,000
4,000
3,000
2,000
1,000

0

11:58 12:00 12:05 12:07
06-06 06-06 06-06 06-06

criteol..

tice: Memory

Dimensioning and tuning memory
Keeping Garbage Collection under control

Minor & Major median GC ratio
%time max GC ratio -~ median major GC ratio median minor GC ratio

qi=
0.8
0.6 -

0.4

0.2 - '
0= T ———

22:34 22:35
05-30 05-30

Babar helped us a lot, we hope it can help you too!

O https://github.com/criteo/babar

https://github.com/criteo/babar

