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“Connecting shoppers to the 
things they need and love.”



500TB
INGESTED DAILY

4000+
HADOOP NODES

5PB
READ DAILY
1



…



Teams moving from MapReduce-based frameworks to newer alternatives

Spark very popular, advertises faster & more efficient processing

Source: http://spark.apache.org (June 2018)

http://spark.apache.org/


But this is not what we experienced…

Jobs were unstable, teams were solving it by allocating too much resources to their jobs.



Profiler for distributed applications on Hadoop

https://github.com/criteo/babar

- Easy to get started, no infrastructure required
- Made for distributed applications
- Works on 10000+ containers apps
- Exports ready-to-use graphs as HTML file

Works with any JVM framework

…

https://github.com/criteo/babar
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Babar agent instruments the executor JVM,
logs metrics to local FS.

Agent can be distributed with spark-submit (no 
installation).

Metrics from:
- JVM
- Stack traces
- /proc/ 
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On job complete, YARN aggregates logs
from all executors into single file on HDFS.
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HTML report

Babar 
processor

Babar processor scans log file and aggregates
metrics into HTML file.
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Visualize expensive code paths from sampled stack traces



sortread serialize deserialize join write



Shuffle is expensive
Not network, not IO, but serialization!



Pick models accordingly
- Serialization/deserialization efficiency often more important than memory footprint
- Use specialized serializers (can allow further optimizations by Spark)

Models also impact cost of size estimation
Can be very expensive (we have seen up to 30% CPU time)

In this example join: -40% CPU time!



Understanding the memory usage
- JVM heap & off-heap memory used

- Physical memory used (RSS memory)

- Reserved memory



Dimensioning and tuning memory
Setting executor & container memory to accommodate the largest executor:
- Avoiding OutOfMemoryErrors (spark.executor.memory)
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Dimensioning and tuning memory
Setting executor & container memory to accommodate the largest executor:

- Avoiding YARN killing containers for exceeding reserved memory (spark.yarn.executor.memoryOverhead)
- Avoiding OutOfMemoryErrors (spark.executor.memory)



Dimensioning and tuning memory
Keeping Garbage Collection under control



Babar helped us a lot, we hope it can help you too!

https://github.com/criteo/babar

https://github.com/criteo/babar


THANK YOU!


