
BENOIT HANOTTE, BERLIN BUZZWORDS 2018



“Connecting shoppers to the 
things they need and love.”



500TB
INGESTED DAILY

4000+
HADOOP NODES

5PB
READ DAILY
1



…



Teams moving from MapReduce-based frameworks to newer alternatives

Spark very popular, advertises faster & more efficient processing

Source: http://spark.apache.org (June 2018)

http://spark.apache.org/


But this is not what we experienced…

Jobs were unstable, teams were solving it by allocating too much resources to their jobs.



Profiler for distributed applications on Hadoop

https://github.com/criteo/babar

- Easy to get started, no infrastructure required
- Made for distributed applications
- Works on 10000+ containers apps
- Exports ready-to-use graphs as HTML file

Works with any JVM framework

…

https://github.com/criteo/babar


YARN Container

Executor JVM

Babar agent

YARN Container

Executor JVM

Babar agent

YARN Container

Executor JVM

Babar agent

Babar agent instruments the executor JVM,
logs metrics to local FS.

Agent can be distributed with spark-submit (no 
installation).

Metrics from:
- JVM
- Stack traces
- /proc/ 



HDFS

YARN Container

Executor JVM

Babar agent

YARN Container

Executor JVM

Babar agent

YARN Container

Executor JVM

Babar agent

On job complete, YARN aggregates logs
from all executors into single file on HDFS.



HDFS

YARN Container

Executor JVM

Babar agent

YARN Container

Executor JVM

Babar agent

YARN Container

Executor JVM

Babar agent

HTML report

Babar 
processor

Babar processor scans log file and aggregates
metrics into HTML file.















A(){
B(){

D(){
}

}
C(){

D(){
}

}
}

A

B C

D D

Call stack

100% CPU time

~20%

~40% CPU time

CPU time

Visualize expensive code paths from sampled stack traces



sortread serialize deserialize join write



Shuffle is expensive
Not network, not IO, but serialization!



Pick models accordingly
- Serialization/deserialization efficiency often more important than memory footprint
- Use specialized serializers (can allow further optimizations by Spark)

Models also impact cost of size estimation
Can be very expensive (we have seen up to 30% CPU time)

In this example join: -40% CPU time!



Understanding the memory usage
- JVM heap & off-heap memory used

- Physical memory used (RSS memory)

- Reserved memory



Dimensioning and tuning memory
Setting executor & container memory to accommodate the largest executor:
- Avoiding OutOfMemoryErrors (spark.executor.memory)



Dimensioning and tuning memory
Setting executor & container memory to accommodate the largest executor:
- Avoiding OutOfMemoryErrors (spark.executor.memory)



Dimensioning and tuning memory
Setting executor & container memory to accommodate the largest executor:

- Avoiding YARN killing containers for exceeding reserved memory (spark.yarn.executor.memoryOverhead)
- Avoiding OutOfMemoryErrors (spark.executor.memory)



Dimensioning and tuning memory
Keeping Garbage Collection under control



Babar helped us a lot, we hope it can help you too!

https://github.com/criteo/babar

https://github.com/criteo/babar


THANK YOU!


