Beyond the Algorithm: What Makes Machine Learning Work?

1

Ellen Friedman, PhD 11 June 2018 Berlin Buzzwords #bbuzz

Contact Information

Ellen Friedman, PhD

Principal Technologist, MapR Technologies Committer Apache Drill & Apache Mahout projects O'Reilly author

Email <u>efriedman@mapr.com</u>

ellenf@apache.org

Twitter @Ellen_Friedman

#bbuzz

What makes machine learning work?

Data Engineer Ian Downard

Had never tried machine learning, but he caught the bug...

Image Recognition: Which Bird Is This?

Rhode Island Red

Image from Wikipedia & used under Creative Commons https://en.wikipedia.org/wiki/ File:Rhode_Island_Red_cock,_cropped.jpg

Buff Orpington

Image from Wikipedia & used under Creative Commons https://upload.wikimedia.org/wikipedia/ commons/7/74/ Barred_Plymouth_Rock_Rooster_001.jpg

Image from Wikipedia & used under Creative Commons https://en.wikipedia.org/wiki/ Aphelocoma#/media/ File:WesternScrubJay2.jpg

More to the point...

Chicken

Image from Wikipedia & used under Creative Commons https://en.wikipedia.org/wiki/ File:Rhode_Island_Red_cock,_cropped.jpg

Chicken

Image from Wikipedia & used under Creative Commons https://upload.wikimedia.org/wikipedia/ commons/7/74/ Barred_Plymouth_Rock_Rooster_001.jpg

Not a Chicken

Image from Wikipedia & used under Creative Commons https://en.wikipedia.org/wiki/ Aphelocoma#/media/ File:WesternScrubJay2.jpg

Domain Knowledge Matters

Chicken

Image from Wikipedia & used under Creative Commons https://en.wikipedia.org/wiki/ File:Rhode_Island_Red_cock,_cropped.jpg

Chicken

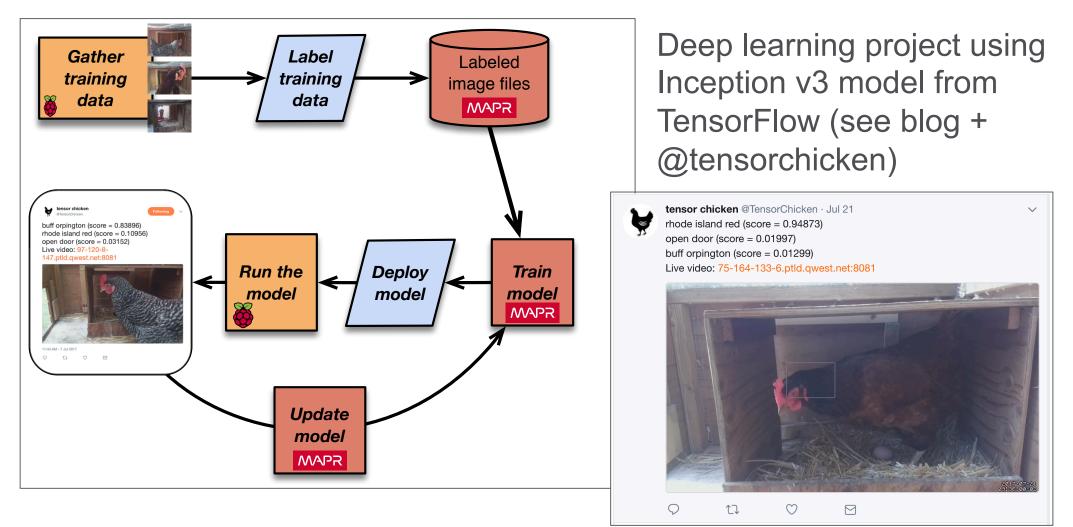


Image from Wikipedia & used under Creative Commons https://upload.wikimedia.org/wikipedia/ commons/7/74/ Barred_Plymouth_Rock_Rooster_001.jpg

Image from Wikipedia & used under Creative Commons https://en.wikipedia.org/wiki/ Aphelocoma#/media/ File:WesternScrubJay2.jpg

Tensor Chicken

Value from ML: what about SLA's?

How long does it take for image recognition model to classify image?

• ~30 seconds because just running on a Raspberry Pi

How long does it take for Scrub Jay to peck an egg?

- < 30 seconds</p>
- Oops...

Value from ML: what about action?

When image classification indicates a jay in the henhouse, what would you do to chase away the predator?

• Not sure yet. That's a problem...

What makes a difference for impact?

Left: labelled as Buff Orpington.

Image from Wikipedia & used under Creative Commons https://upload.wikimedia.org/wikipedia/ commons/7/74/ Barred_Plymouth_Rock_Rooster_001.jpg

But...this error in domain knowledge (wrong name) did not matter for SLAs.

Image from Wikipedia used under Creative Commons https://en.wikipedia.org/wiki/Orpington_chicken#/media/ File:Coq_orpington_fauve.JPG

Right: This what a Buff Orpington really looks like.

What lessons can we learn from this toy project?

- Image recognition & deep learning are cool
- In some cases, building or training a model is simple
- Domain knowledge matters (really)
- Pay attention to SLAs
- For real business value, have a plan of action in response to machine learning insights (producing a report ≠ taking an action)
- Software engineers have a role in machine learning (!)

What about real world examples?

Domain Knowledge Matters: Video Recommender

- Use clicks as input data: recommender gives poor performance
 Model is testing the wrong preferences: how well people liked titles
- Use first 30 seconds of viewing as input data: recommender performance is good
 - Model now tests how well people liked the videos, not just the titles

Domain Knowledge Matters: Detecting Security Attacks

Security expert at a bank preserved headers for web site requests

Spot the Important Difference?

```
GET /personal/comparison-table
Host: www.sometarget.com
User-Agent: Mozilla/4.0 (compa
Accept-Encoding: deflate
Accept-Charset: UTF-8
Accept-Language: fr
Cache-Control: no-cache
Pragma: no-cache
Connection: Keep-Alive
```

GET /photo.jpg HTTP/1.1 Host: lh4.googleusercontent. User-Agent: Mozilla/5.0 (Mad Accept: image/png,image/*;q= Accept-Language: en-US, en; q= Accept-Encoding: gzip, defla Referer: https://www.google. Connection: keep-alive If-None-Match: "v9" Cache-Control: max-age=0

Attacker request

Real request

Spot the Important Difference?

```
GET /personal/comparison-table
Host: www.sometarget.com
User-Agent: Mozilla/4.0 (compa
Accept-Encoding deflate
Accept-Charset: UTF-8
Accept-Language: <
Cache-Control: no-cache
Pragma: no-cache
Connection: Keep-Alive
```

GET /photo.jpg HTTP/1.1 Host: lh4.googleusercontent. User-Agent: Mozilla/5.0 (Mad Accept: image/png,image/*;q= ☆ccept-Language: en-US,en;q= 🂫 cept-Encoding: gzip, defla Referer: https://www.google. Connection: keep-alive If-None-Match: "v9" Cache-Control: max-age=0

Attacker request

Real request

Another Example

GET photo.jpg HTTP/1.1 Host: lh4.googleusercontent User-agent: Mozilla/5.0 (Ma Accept: image/png,image/* Accept-language: en-US, en Accept-encoding: gzip, defl Referer: https://www.google Connection: keep-alive If-none-match: "v9" Cache-control: max-age=0

GET cc/borken.json HTTP/1.1 host: c.qrs.my user-agent: Mozilla/4.0 (co accept: application/json, t accept-language: en-US,en accept-encoding: gzip, defl referer: none connection: keep-alive if-none-match: "v9" cache-control: max-age=0

Real request

Attacker request

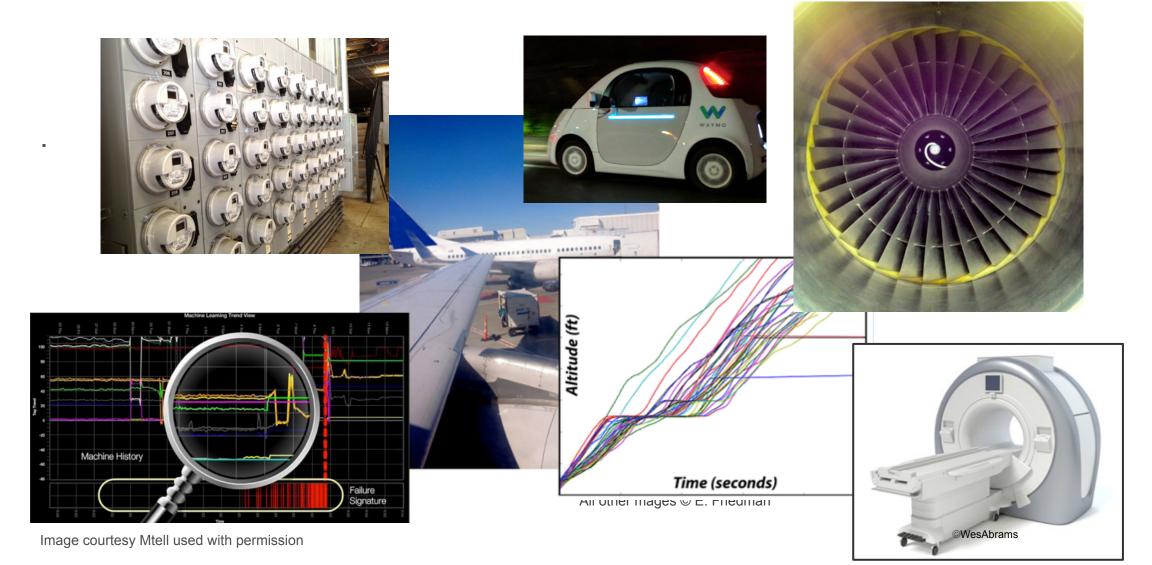
Another Example

GET photo.jpg HTTP/1.1 Host: lh4.googleusercontent User-agent: Mozilla/5.0 (Ma Accept: image/png,image/* Accept-language: en-US, en Accept-encoding: gzip, defl Referer: https://www.google Connection: keep-alive If-none-match: "v9" Cache-control: max-age=0

GET cc/borken.json HTTP/1.1 host: c.qrs.my user-agent: Mozilla/4.0 (co accept: application/json, t accept-language: en-US,en accept-encoding: gzip, defl referer: none connection: keep-alive if-none-match: "v9" cache-control: max-age=0

Real request

Attacker request


Domain Knowledge Matters: Detecting Security Attacks

Security expert at a bank preserved headers for web site requests

- Detected anomaly in headers for the attackers vs normal (real) requests
- Pattern of behavior for attackers was allowable for headers and it was not predictable: but it was different

Keep data: You don't know what you'll need to know later

Big Industry, Big Data, Big Value

Simple But Valuable: Accounting Audit Targeting

Big industrial company with a lot of machinery

- Tracking actions & parts
 - label as repairs, contracted services, delivery of supplies, etc.
- Which are to be taxed, expensed or counted as revenues
 - Mislabelling can cost millions of dollars
- Use machine learning to target potential mislabelling for audit review
- <u>Relatively simple models</u> (pattern matching; exception detection) <u>deliver a huge business value</u>.

Is it the algorithm? the model? the ML tool?

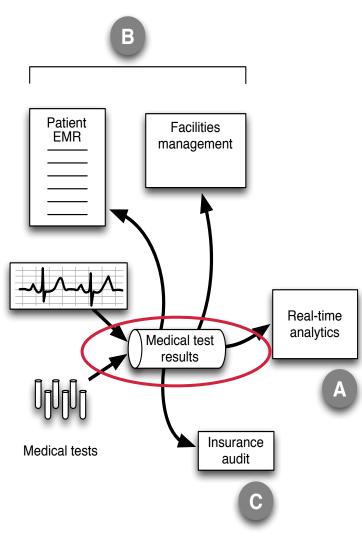
TensorFlow, MXNet, Caffe, H20 - Which Machine Learning Tool Is Best?		
Blog > Machine Learning	> Current Post	
Search	Share f Share	Contributed by Ellen Friedman
Categories	If you ask ten data scientists, "Which machine learning tool is best?" you'll likely get	
All	many different answers. But slightly more surprising is that if you ask any one data of those data scientists the same question, you'll likely still get many different	(BE)
Apache Drill	answers. Why is that? The reason turns out to be one of a couple of surprising things about the current state of machine learning that I discovered while delving into the question of what's the best tool for machine learning (or deep learning).	
Apache Hadoop		
Apache Hive		Lak - and
Apache Mesos		
Apache Myriad		
Apache Spark	Surprising Observations About Machine Learning Here's a quick preview of two key observations about what makes machine learning successful:	
Cloud Computing		
Enterprise Data Nub		

https://mapr.com/blog/tensorflow-mxnet-caffe-h2o-which-ml-best/

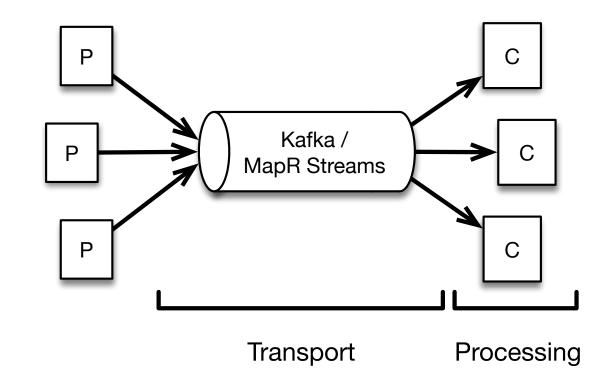
90% of the effort in successful machine learning isn't the algorithm or the model...

It's the logistics

What Does Streaming Do for You?



Surfer on standing wave, Munich Image © 2017 Ellen Friedman


Stream transport supports microservices

At the Heart: Message Transport

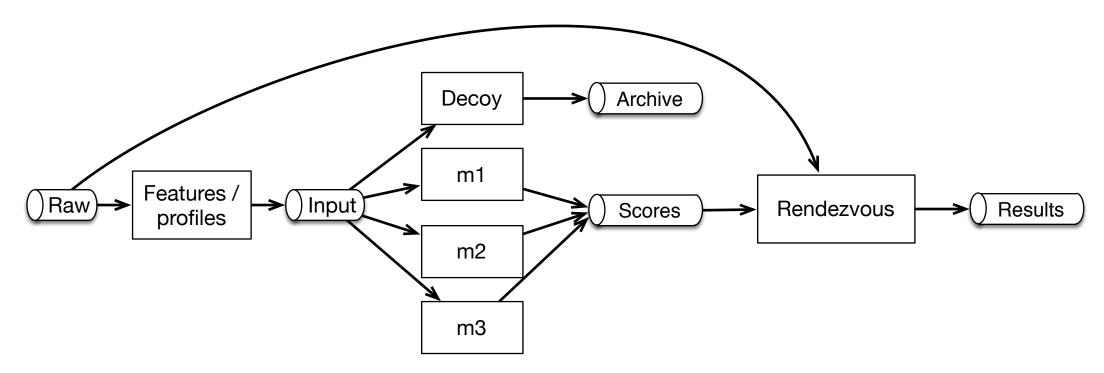
With the right messaging tool at the heart of stream-1st architecture you support other classes of use cases (B & C)

Stream Transport that Decouples Producers & Consumers

Good stream transport is persistent, performant & pervasive!

Streaming Microservices

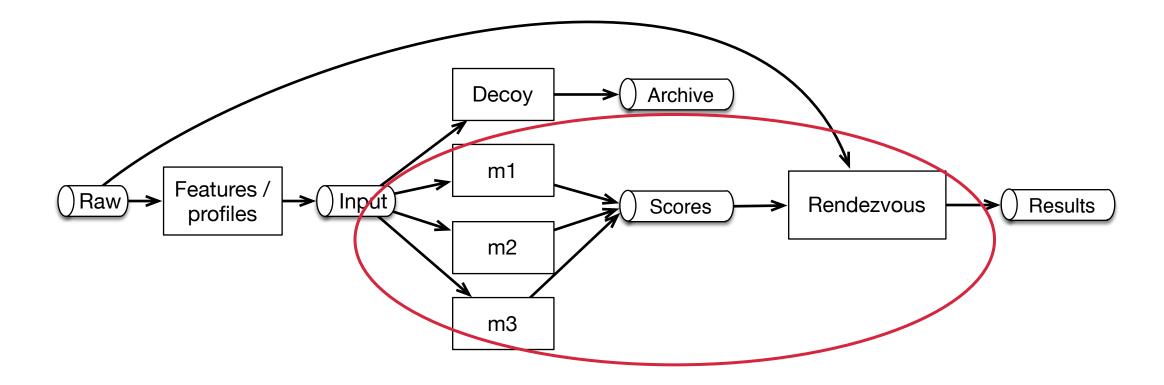
- "Streaming Microservices" by Ted Dunning & Ellen Friedman, chapter in Encyclopedia of Big Data Technologies, Sherif Sakr and Albert Zomaya, editors, © 2018 (Springer International Publishing)
- Chapter 3 of Streaming Architecture by Ted Dunning & Ellen Friedman © 2016 (O'Reilly Media)


https://mapr.com/ebooks/streaming-architecture/chapter-03-streaming-platform-formicroservices.html Get rid of the myth of the unitary model

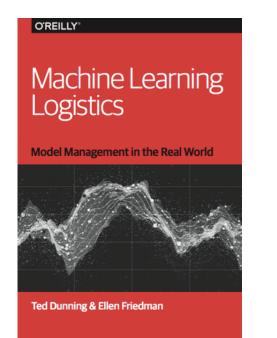
Streaming microservices provides flexibility & independence to manage many models

Logistics for machine learning can be difficult

- Just getting the training & input data is hard
- Many models to manage
- Model-to-model evaluation needs to be convenient & accurate
- Respond as the world changes: Deploy to production with agile roll out & roll
- There's a need for good data engineering (not just data science)

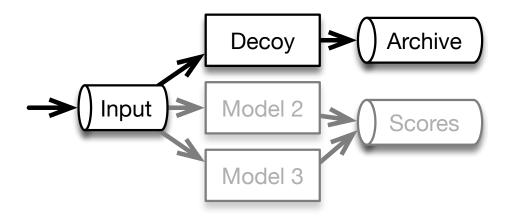

Enter Rendezvous...

Rendezvous Architecture described in:

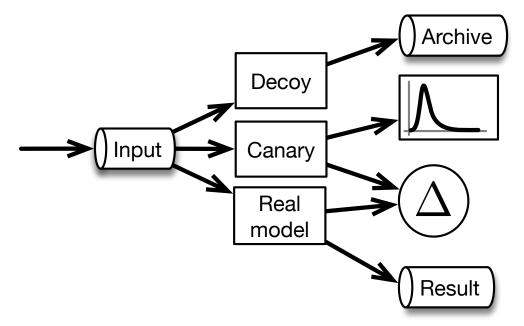

- *Machine Learning Logistics* book by Ted Dunning & Ellen Friedman © 2018 (O'Reilly)
- "Rendezvous Architecture" by Ted Dunning & Ellen Friedman, chapter in *Encyclopedia of Big Data Technologies*. Sherif Sakr and Albert Zomaya, editors. Springer International Publishing, © 2018 in press.

Rendezvous server making continuous decisions

Machine Learning Logistics: Model Management in the Real World


By Ted Dunning & Ellen Friedman © September 2017

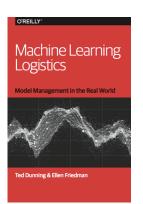
Free copy online courtesy of MapR: https://mapr.com/ebook/machine-learninglogistics/


Decoy Model in the Rendezvous Architecture

- Looks like a model, but it just archives inputs
- Safe in a good streaming environment, less safe without good isolation

Canary Model Helps Gauge Performance of New Models

- Acts as a baseline reference for reasonable performance
- Can be compared to performance of newly deployed models


To deploy a new model, just stop ignoring it

Rendezvous: Mainly for Decisioning Type Systems

- Decisioning style machine learning
 - Looking for "right answer"
 - Simpler than interactive machine learning (think self-driving car)
- Examples: fraud detection, predictive analytics; churn prediction (telecom); deep learning (speech or image recognition)

Update on Machine Learning Logistics

Rendezvous Architecture

- Implemented by Terry McCann (Adatis) and Boris Lublinsky (Lightbend)
- Soon to be put into a product by Finnish company Valonai
- Large US financial company: data science team starting to plan how to build rendezvous servers for each major project
- "Rendezvous Architecture" is an entry in Springer's Encyclopedia of Big Data Technologies (© 2018)

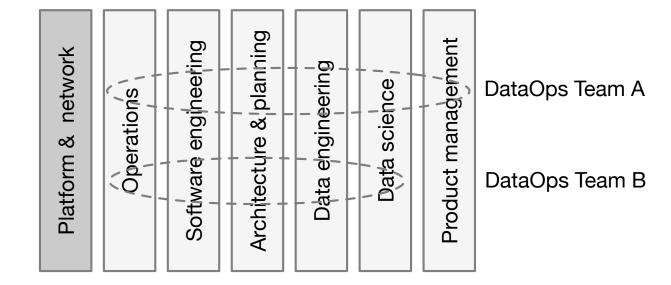
Update on Machine Learning Logistics

• MLFlow

- From DataBricks to focus on early part of logistics

https://databricks.com/blog/2018/06/05/introducing-mlflow-an-open-source-machinelearning-platform.html

- Clipper
 - From UC Berkeley Rise Lab; has deployment of models; some similar goals to Rendezvous


https://rise.cs.berkeley.edu/projects/clipper/

Be ready to adapt: Conditions will change

DataOps: Brings Flexibility & Focus

- You don't have to be a data scientist to contribute to machine learning
- Software engineer/ developer plays a role: but you need good data skills

Cross functional DataOps teams

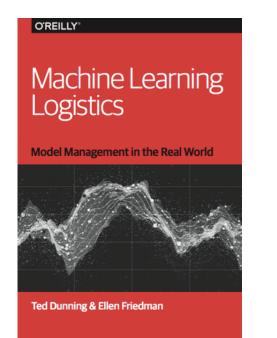
DataOps Principles

"DataOps teams seek to orchestrate data, tools, code and environments from beginning to end."

Thor Olavsrud interview with Ted Dunning & Ellen Friedman for CIO

https://www.cio.com/article/3237694/analytics/what-is-dataops-data-operations-analytics.html

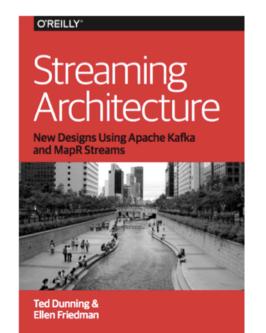
You don't need to be a data scientist to do machine learning, but you do need data skills. Start with these


by Ted Dunning 13 Sept 2017 in "InfoWorld" <u>*https://www.infoworld.com/article/3223688/machine-</u> <u><i>learning/machine-learning-skills-for-software-engineers.html*</u></u>

Advantages of a DataOps Approach

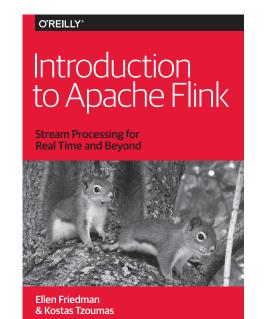
- Able to pivot & respond to real-world events as they happen
- Improved efficiency and better use of people's time
- Faster time-to-value
- A good fit to working with a global data fabric

Machine Learning Logistics: Model Management in the Real World


By Ted Dunning & Ellen Friedman © September 2017

Free copy online courtesy of MapR: https://mapr.com/ebook/machine-learninglogistics/

Streaming Architecture: New Designs Using Apache Kafka & MapR Streams


By Ted Dunning & Ellen Friedman © March 2017

Free copy online courtesy of MapR: <u>http://bit.ly/mapr-streaming-architecture-book</u>

Introduction to Apache Flink

By Ellen Friedman & Kostas Tzoumas © September 2016

Free copy online courtesy of MapR: https://mapr.com/ebooks/intro-to-apacheflink/

Please support women in tech – help build girls' dreams of what they can accomplish

#womenintech #datawomen

© Ellen Friedman 2015

Thank you !

Contact Information

Ellen Friedman, PhD

Principal Technologist, MapR Technologies Committer Apache Drill & Apache Mahout projects O'Reilly author

Email <u>efriedman@mapr.com</u>

ellenf@apache.org

Twitter @Ellen_Friedman

#bbuzz