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Who am I?
● My name is Holden Karau
● Prefered pronouns are she/her
● I’m a Principal Software Engineer at IBM’s Spark Technology Center
● Apache Spark committer
● previously Alpine, Databricks, Google, Foursquare & Amazon
● co-author of  High Performance Spark & Learning Spark (+ more)
● Twitter: @holdenkarau
● Slideshare http://www.slideshare.net/hkarau 
● Linkedin https://www.linkedin.com/in/holdenkarau 
● Github https://github.com/holdenk 
● Related Spark Videos http://bit.ly/holdenSparkVideos 

http://www.spark.tc/
https://twitter.com/holdenkarau
http://www.slideshare.net/hkarau
https://www.linkedin.com/in/holdenkarau
https://github.com/holdenk
http://bit.ly/holdenSparkVideos
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Founded in 2015.
Location:

Physical: 505 Howard St., San Francisco CA
Web: http://spark.tc   Twitter: @apachespark_tc

Mission:
Contribute intellectual and technical capital to the Apache Spark 
community.
Make the core technology enterprise- and cloud-ready.
Build data science skills to drive intelligence into business 
applications — http://bigdatauniversity.com 

Key statistics:
About 50 developers, co-located with 25 IBM designers.
Major contributions to Apache Spark http://jiras.spark.tc 
Apache SystemML is now an Apache Incubator project.
Founding member of UC Berkeley AMPLab and RISE Lab
Member of R Consortium and Scala Center

Spark Technology 
Center

http://spark.tc/
https://twitter.com/apachespark_tc
http://bigdatauniversity.com/
http://jiras.spark.tc/


Who do I think you all are?

● Nice people*
● Possibly some knowledge of Apache Spark?
● Interested in understanding a bit about how Spark 

works?
● Want to make your spark jobs more efficient
● Familiar-ish with Scala or Java or Python

Amanda



Why people come to Spark:
Well this MapReduce 
job is going to take 
16 hours - how long 
could it take to learn 
Spark?

dougwoods



Why people come to Spark:
My DataFrame won’t fit 
in memory on my cluster 
anymore, let alone my 
MacBook Pro :( Maybe 
this Spark business will 
solve that...

brownpau



Plus a little magic :)

Steven Saus



What is the “magic” of Spark?

● DAG / “query plan” is the root of much of it
○ Think the person behind the curtain

● RDDs: Optimizer to pipeline steps
● Resiliency: recover from failures rather than protecting 

from failures.
● “In-memory” + “spill-to-disk”
● Functional programming to build the DAG for “free”
● Select operations without deserialization

Richard Gillin



Not enough time for all the magic

● Some of it was covered yesterday in the morning’s 
Spark talk

● If you missed that talk the rest of the magic is also in my 
GOTO Chicago talk - 
https://gotochgo.com/2017/sessions/33 (slides & video)

https://gotochgo.com/2017/sessions/33
https://gotochgo.com/2017/sessions/33


Your data is magically distributed

● At some point the RDD or DataFrame is forced to exist
● Then Spark splits up the data on a bunch of different 

machines
● The default looks “like”* your input data source (often)
● If the data needs to be joined (or similar) Spark does a 

“shuffle” so it knows which keys are where
● Partioners in Spark are deterministic on key input (e.g. 

for any given key they must always send to the same 
partition)

ncfc0721



When we say distributed we mean...



Key-skew to the anti-rescue… :(

● Keys aren’t evenly distributed
○ Sales by zip code, or records by city, etc.

● groupByKey will explode (but it's pretty easy to break)
● We can have really unbalanced partitions

○ If we have enough key skew sortByKey could even fail
○ Stragglers (uneven sharding can make some tasks take much longer)
○ We can add some noise if we need to

cinnamonster
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RDDs + lambdas = Black boxes

● Spark can’t see inside your lambdas
● Spark can optimize the maps / flatmaps/ reduceByeKey / 

etc - but not the things inside of that.
● If you load data in then only access some fields or filter 

Spark can’t use that information :(

_torne



key-skew + black boxes == more sadness

● There is a worse way to do WordCount
● We can use the seemingly safe thing called groupByKey
● Then compute the sum
● But since it’s on a slide of “more sadness” we know where 

this is going...

_torne



Bad word count :(
words = rdd.flatMap(lambda x: x.split(" "))

wordPairs = words.map(lambda w: (w, 1))

grouped = wordPairs.groupByKey()

counted_words = grouped.mapValues(lambda counts: sum(counts))

counted_words.saveAsTextFile("boop")

Tomomi



GroupByKey

48kb

385kb



So what did we do instead?
● reduceByKey

○ Works when the types are the same (e.g. in our summing version)

● aggregateByKey
○ Doesn’t require the types to be the same (e.g. computing stats model or similar)

Allows Spark to pipeline the reduction & skip making the list

We also got a map-side reduction (note the difference in shuffled read)

Effectively allows Spark to “understand” our operation more

Note: we can’t use the “noise” approach from the shuffle tricks to replace 
groupByKey



reduceByKey

385kb

11kb



Opening the black box: Datasets / DFs

● Operations can be written in a DSL Spark can 
understand

● Can “escape” back to RDDs and arbitrary lambdas
● But give you more options to “help” the optimized
● groupBy returns a GroupedDataStructure and offers 

special aggregates
● Selects can push filters down for us*
● Magic codegen for certain statements :D
● Etc.



Using Datasets to mix functional & relational
ds.filter($"happy" === true).

  select($"attributes"(0).as[Double]).

  reduce((x, y) => x + y)

A typed query (specifies the 
return type). Without the as[] 
will return a DataFrame 
(Dataset[Row])

Traditional functional 
reduction:
arbitrary scala code :)

Robert Couse-Baker



And functional style maps:
/**

 * Functional map + Dataset, sums the positive attributes for the 

pandas

 */

def funMap(ds: Dataset[RawPanda]): Dataset[Double] = {

   ds.map{rp => rp.attributes.filter(_ > 0).sum}

}



Functional & Relational wordcount (in Python)
# In Spark 2+ we need to convert to an RDD for functional queries

# Note: we could also do this by registering a UDF.

words = df.select("panda_name").rdd().flatMap(

    lambda row: row.panda_name.split(" "))

# Create a new DataFrame to count the number of words

words_df = words.map(lambda w: Row(word=w, cnt=1)).toDF()

word_counts = words_df.groupBy("word").sum()



How much faster can it be?
Andrew Skudder



What can the optimizer do now?

● Sort on the serialized data
● Understand the aggregate (“partial aggregates”)

○ Could sort of do this before but not as awesomely, and only if we used 
reduceByKey - not groupByKey

● Pack bits nice and tight

Capes Treasures



What are relational transformers like?

Many familiar faces are back with a twist:
● filter
● join
● groupBy - Now safe!
And some new ones:
● select
● window
● sql (register as a table and run “arbitrary” SQL)
● etc.



So whats this new groupBy?

● No longer causes explosions like RDD groupBy
○ Able to introspect and pipeline the aggregation

● Returns a GroupedData (or GroupedDataset)
● Makes it easy to perform multiple aggregations
● Built in shortcuts for aggregates like avg, min, max
● Longer list at 

http://spark.apache.org/docs/latest/api/scala/index.html#
org.apache.spark.sql.functions$ 

● Allows the optimizer to see what aggregates are being 
performed

Sherrie Thai

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$


Easily compute multiple aggregates:
df.groupBy("age").agg(min("hours-per-week"), 

                      avg("hours-per-week"),

                      max("capital-gain"))

PhotoAtelier



But where Datasets explode?

● Iterative algorithms - large plans
● Some push downs are sad pandas :(
● Default shuffle size is sometimes too small for big data 

(200 partitions)
● Default partition size when reading in is also sad

http://www.explodingkittens.com/


High Performance Spark!

Focused on how to scale your Spark jobs

You can buy it from O’Reilly - http://bit.ly/highPerfSpark
Get notified when in print on Amazon:
● http://www.highperformancespark.com 
● https://twitter.com/highperfspark

http://bit.ly/highPerfSpark
http://www.highperformancespark.com
http://www.highperformancespark.com
https://twitter.com/highperfspark
https://twitter.com/highperfspark


Where to go from here?

● Just getting started: Paco Nathan’s video
● Spark API docs
● Spark summit youtube videos (TheApacheSpark on YT)
● Spark & Everything (“Weekend Project”) @ 2:30 in 

Palais Atelier
● Reading the source code - not that bad?

Merlijn Hoek

https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiy1cj5mrnUAhVCVhQKHSm4BfkQtwIIJjAA&url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEuWDz2Vb1Io&usg=AFQjCNGS9hY3IlVKhRAVBmxAaauk9o-FfA
https://www.youtube.com/user/TheApacheSpark


k thnx bye!

If you care about Spark testing and 
don’t hate surveys: 
http://bit.ly/holdenTestingSpark 

Will tweet results 
“eventually” @holdenkarau

PySpark Users: Have some simple 
UDFs you wish ran faster you are 
willing to share?:
http://bit.ly/pySparkUDF 

Pssst: Have feedback on the presentation? Give me a shout ( holden@pigscanfly.ca ) if you feel comfortable 
doing so :)

http://bit.ly/holdenTestingSpark
http://bit.ly/holdenTestingSpark
https://twitter.com/holdenkarau
http://bit.ly/pySparkUDF
http://bit.ly/pySparkUDF
mailto:holden@pigscanfly.ca


Our final bit of magic today (Python & co):

● Spark is written in Scala (runs on the JVM)
● Users want to work in their favourite language
● Python, R, C#, etc. all need a way to talk to the JVM
● How expensive could IPC be anyways? :P
● (Time Permitting)



A (possible) quick detour into PySpark’s 

Photo by Bill Ward



Spark in Scala, how does PySpark work?

● Py4J + pickling + magic
○ This can be kind of slow sometimes

● RDDs are generally RDDs of pickled objects
● Spark SQL (and DataFrames) avoid some of this

kristin klein



So what does that look like?

Driver

py4j

Worker 1

Worker K

pipe

pipe



So how does this break?

● Data from Spark worker serialized and piped to Python 
worker
○ Multiple iterator-to-iterator transformations are still pipelined :)

● Double serialization cost makes everything more 
expensive

● Python worker startup takes a bit of extra time
● Python memory isn’t controlled by the JVM - easy to go 

over container limits if deploying on YARN or similar
● etc.



What do the Python gnomes look like?
        self.is_cached = True

        javaStorageLevel = 

self.ctx._getJavaStorageLevel(storageLevel)

        self._jrdd.persist(javaStorageLevel)

        return self



Spark specific terms in this talk

● RDD
○ Resilient Distributed Dataset - Like a distributed collection. Supports 

many of the same operations as Seq’s in Scala but automatically 
distributed and fault tolerant. Lazily evaluated, and handles faults by 
recompute. Any* Java or Kyro serializable object.

● DataFrame
○ Spark DataFrame - not a Pandas or R DataFrame. Distributed, 

supports a limited set of operations. Columnar structured, runtime 
schema information only. Limited* data types.

● Dataset
○ Compile time typed version of DataFrame (templated). The future! 

(not exclusively)

skdevitt



Magic part #1: the DAG

● In Spark most of our work is done by transformations
○ Things like map

● Transformations return new RDDs or DataFrames 
representing this data

● The RDD or DataFrame however doesn’t really “exist”
● RDD & DataFrames are really just “plans” of how to 

make the data show up if we force Spark’s hand
● tl;dr - the data doesn’t exist until it “has” to

Photo by Dan G



The DAG The query plan
Susanne Nilsson



Word count (in python)

lines = sc.textFile(src)
words = lines.flatMap(lambda x: x.split(" "))
word_count = 
  (words.map(lambda x: (x, 1))
            .reduceByKey(lambda x, y: x+y))
word_count.saveAsTextFile(“output”)

Photo By: Will 
Keightley



Word count (in python)

lines = sc.textFile(src)
words = lines.flatMap(lambda x: x.split(" "))
word_count = 
  (words.map(lambda x: (x, 1))
            .reduceByKey(lambda x, y: x+y))
word_count.saveAsTextFile("output")

No data is read or 
processed until after 
this line

This is an “action” 
which forces spark to 
evaluate the RDD

daniilr



How the DAG magic is awesome:

● Pipelining (can put maps, filter, flatMap together)
● Can do interesting optimizations by delaying work
● We use the DAG to recompute on failure

○ (writing data out to 3 disks on different machines is so last season)
○ Or the DAG puts the R is Resilient RDD, except DAG doesn’t have an 

R :(

Matthew Hurst



And where it reaches its limits:

● It doesn’t have a whole program view
○ Can only see up to the action, can’t see into the next one
○ So we have to help Spark out and cache

● Combining the transformations together makes it hard 
to know what failed

● It can only see the pieces it understands
○ can see two maps but can’t tell what each map is doing

r2hox



And back to magic with Dataframes:
Andrew Skudder

*Note: do not compare absolute #s with previous graph - 
different dataset sizes because I forgot to write it down when I 
made the first one.



The “future*”: Faster interchange

● Faster interchange between Python and Spark (e.g. 
Tungsten or Apache Arrow) (SPARK-13391 & 
SPARK-13534 + it’s PR)

● Willing to share your Python UDFs for benchmarking? - 
http://bit.ly/pySparkUDF 

*The future may or may not have better performance than today. But bun-bun the bunny has some lettuce so its 
ok!

https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://arrow.apache.org
https://issues.apache.org/jira/browse/SPARK-13391
https://issues.apache.org/jira/browse/SPARK-13534
https://github.com/apache/spark/pull/15821
https://issues.apache.org/jira/browse/SPARK-13534
http://bit.ly/pySparkUDF
http://bit.ly/pySparkUDF


Spark Videos

● Apache Spark Youtube Channel
● My Spark videos on YouTube -

○ http://bit.ly/holdenSparkVideos 
● Spark Summit 2014 training
● Paco’s Introduction to Apache Spark

Paul Anderson

https://www.youtube.com/channel/UCRzsq7k4-kT-h3TDUBQ82-w
https://www.youtube.com/channel/UCRzsq7k4-kT-h3TDUBQ82-w
http://bit.ly/holdenSparkVideos
http://bit.ly/holdenSparkVideos
http://bit.ly/holdenSparkVideos
http://bit.ly/holdenSparkVideos
http://bit.ly/holdenSparkVideos
https://spark-summit.org/2014/training
https://spark-summit.org/2014/training
http://bit.ly/intro-to-apache-spark-paco-video


Learning Spark

Fast Data 
Processing with 
Spark
(Out of Date)

Fast Data 
Processing with 
Spark 
(2nd edition)

Advanced 
Analytics with 
Spark

Spark in Action

High Performance SparkLearning PySpark

http://bit.ly/learning-spark-presentation
http://bit.ly/learning-spark-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/advanced-analytics-spark
http://www.manning.com/bonaci/
http://www.highperformancespark.com


High Performance Spark!

Available from O’Reilly TODAY - Amazon print “soon”
● Buy from O’Reilly - http://bit.ly/highPerfSpark
Get notified when in print on Amazon:
● http://www.highperformancespark.com 
● https://twitter.com/highperfspark

* Early Release means extra mistakes, but also a chance to help us make a more awesome 
book. 

http://bit.ly/highPerfSpark
http://www.highperformancespark.com
http://www.highperformancespark.com
https://twitter.com/highperfspark
https://twitter.com/highperfspark


And some upcoming talks:

● June
○ Berlin Buzzwords
○ Scala Swarm (Porto, Portugal)

● July
○ Scala Up North

● August
○ PyCon AU

http://scala-swarm.org/
http://scala-swarm.org/

