Spor‘ll(?

(A brief tour of)
The Magic Behind Spark

Holden Karau
@holdenkarau

@ python’ ! n

https://twitter.com/holdenkarau
https://twitter.com/holdenkarau

Who am [?

My name is Holden Karau

Prefered pronouns are she/her

I’m a Principal Software Engineer at IBM’s Spark Technology Center
Apache Spark committer

previously Alpine, Databricks, Google, Foursquare & Amazon
co-author of High Performance Spark & Learning Spark (+ more)
Twitter: @holdenkarau

Slideshare htip://www.slideshare.net/hkarau

Linkedin https://www.linkedin.com/in/holdenkarau

Github https://github.com/holdenk

Related Spark Videos http://bit.ly/holdenSparkVideos

http://www.spark.tc/
https://twitter.com/holdenkarau
http://www.slideshare.net/hkarau
https://www.linkedin.com/in/holdenkarau
https://github.com/holdenk
http://bit.ly/holdenSparkVideos

nnnnnnnnnnnnnnnnnnnn

HI
-E-]- Spark.tc Spark Technology o
Center : 2015

.,.._.,----nylllll!llllllIII | Sp Oﬂ(

Founded in 2015.
IBM Location:
Physical: 505 H d St., San F i CA
%ggl’r‘;ir(] O I O gy Weyi:?:lfj’;tp://sparol:N.tacr Twittein@gzzzESSDark tc
Center Mission:

Contribute intellectual and technical capital to the Apache Spark
community.
Make the core technology enterprise- and cloud-ready.

Build data science skills to drive intelligence into business
applications — http://bigdatauniversity.com

Key statistics:
About 50 developers, co-located with 25 IBM designers.
Major contributions to Apache Spark http://jiras.spark.tc
Apache SystemML is now an Apache Incubator project.
Founding member of UC Berkeley AMPLab and RISE Lab
Member of R Consortium and Scala Center

3
|
S\
i
4
:
:

http://spark.tc/
https://twitter.com/apachespark_tc
http://bigdatauniversity.com/
http://jiras.spark.tc/

Who do | think you all are?

e Nice people”

e Possibly some knowledge of Apache Spark?

e |Interested in understanding a bit about how Spark
works?

e \Want to make your spark jobs more efficient

e Familiar-ish with Scala or Java or Python

Why people come to Spark:

— Well this MapReduce
¥ - job is going to take
16 hours - how long

Why people come to Spark:

My DataFrame won't fit |
in memory on my cluster |
anymore, let alone my §
MacBook Pro :(Maybe
this Spark business will
solve that...

" [}

Plus a little magic :)

What is the “magic” of Spark?

e DAG /“query plan” is the root of much of it
o Think the person behind the curtain

e RDDs: Optimizer to pipeline steps

e Resiliency: recover from failures rather than protecting
from failures.

e “In-memory” + “spill-to-disk”

e Functional programming to build the DAG for “free”

e Select operations without deserialization

Not enough time for all the magic

e Some of it was covered yesterday in the morning’s
Spark talk

e |f you missed that talk the rest of the magic is also in my
GOTO Chicago talk -

https://gotochgo.com/2017/sessions/33 (slides & video)

https://gotochgo.com/2017/sessions/33
https://gotochgo.com/2017/sessions/33

Your data is magically distributed

e At some point the RDD or DataFrame is forced to exist

e Then Spark splits up the data on a bunch of different
machines

e The default looks “like”™ your input data source (often)

e |f the data needs to be joined (or similar) Spark does a
“shuffle” so it knows which keys are where

e Partioners in Spark are deterministic on key input (e.g.

for any given key they must always send to the same
partition)

c
©
O
S
O
S

e
O

whd
=

0

When we say distr

.
= A8

Key-skew to the anti-rescue... :(

cmnamdongt(zr%

e Keys aren’t evenly distributed
o Sales by zip code, or records by city, etc.
e groupByKey will explode (but it's pretty easy to break)

e \We can have really unbalanced partitions
o If we have enough key skew sortByKey could even fail
o Stragglers (uneven sharding can make some tasks take much longer)
o We can add some noise if we need to

(94110, A, B) (94110, A, R) | | (94110, E, R)
(94110, A, C) (10003, A,R) | | (67843, T, R)
(10003, D, E) (94110, D, R) | | (94110, T, R)
(94110, E, F) (94110, E,R) | | (94110, T, R)

RDDs + lambdas = Black boxes

e Spark can’t see inside your lambdas

e Spark can optimize the maps / flatmaps/ reduceByeKey /
etc - but not the things inside of that.

e If you load data in then only access some fields or filter
Spark can’t use that information :(

key-skew + black boxes == more sadness

There is a worse way to do WordCount

We can use the seemingly safe thing called groupByKey
Then compute the sum

But since it's on a slide of “more sadness” we know where
this is going...

Bad word count :(

words = rdd.flatMap(lambda x: x.split(" ")) mtaa OO
wordPairs = words.map(lambda w: (w, 1))

grouped = wordPairs.groupByKey()

counted words = grouped.mapValues(lambda counts: sum(counts))

counted words.saveAsTextFile("boop")

’ " spark shell - Details *

€ & C |[localhost:4040/jobs/job/7id=1 S W B OOg® =
Spmﬁ B3 SNARSHOT Johs Stages Storage Environment Executors SQL

GroupByKey

Status: SUCCEEDED
Completed Stages: 2

¥ Event Timeline
~ DAG Visualization

Stage 1 Stage 2
textFile groupByKey
mapValues
Map
map

48kb

Completed Stages (2)

Stage Tasks: Shuffle Shuffle
1d Description Submitted Duration Succeeded/Total Input Obtput Read Write
2 take at <console>:32 rdeaiis 20151014 04s (AN 48.7
12:02:34 KB
1 map at <console>:25 +deals 201511014 04s ([NESESH 3854 4248
12:02:34 KB KB

/////’

385kb

So what did we do instead?

e reduceByKey

o Works when the types are the same (e.g. in our summing version)
e aggregateByKey

o Doesn’t require the types to be the same (e.g. computing stats model or similar)

Allows Spark to pipeline the reduction & skip making the list
We also got a map-side reduction (note the difference in shuffled read)
Effectively allows Spark to “understand” our operation more

Note: we can’t use the “noise” approach from the shuffle tricks to replace
groupByKey

reduceByKey

&«

C' | [localhost:4040/jobs/job/?id=2

Sy W B @QOGg =

SpOl' i 1.6.0-SNAPSHOT

Details for Job 2
Status: SUCCEEDED
Completed Stages: 2

» Event Timeline
~ DAG Visualization

Stage 3

textFile

map

Completed Stages (2)

Stage

Id Description

4 take at <console>30
3 map at <console>:25

Jobs

Stage 4

reduceByKey

Stages Storage Environment Executors sSQL

11kb

Tasks: Shuffle Shuffle
Submitted Duration SucceedediTotal Input Outpw Read Write

+detals 20151114 24ms | (AR 116

12:02:38 KB
+detals 20151114 08s | ([NESESIINN 385.4 376.6
12:02:37 KB KB

/////’

385kb

Opening the black box: Datasets / DFs

e Operations can be written in a DSL Spark can
understand

e (Can “escape” back to RDDs and arbitrary lambdas

e But give you more options to “help” the optimized

e groupBy returns a GroupedDataStructure and offers
special aggregates

e Selects can push filters down for us*

e Magic codegen for certain statements :D

e Eftc.

Using Datasets to mix functional & relational

ds.filter($"happy" === true).
select($"attributes"” (@) .as[Double]).
reduce((x, y) => X + y)

. _ A typed query (specifies the
Traditional functional return type). Without the as]]

red_uction: will return a DataFrame
arbitrary scala code :) (Dataset[Row])

And functional style maps:

/>l<>|<
* Functional map + Dataset, sums the positive attributes for the
pandas

*/
def funMap(ds: Dataset[RawPanda]): Dataset[Double] = {
ds.map{rp => rp.attributes.filter(_ > ©@).sum}

Functional & Relational wordcount (in Python)

In Spark 2+ we need to convert to an RDD for functional queries
Note: we could also do this by registering a UDF.
words = df.select("panda name").rdd().flatMap(
lambda row: row.panda_name.split(" "))
Create a new DataFrame to count the number of words

words_df = words.map(lambda w: Row(word=w, cnt=1)).toDF()

word counts = words_df.groupBy("“word").sum()

How much faster can it be?

Execution time: reduceByKey, groupByKey, and

DataFrame
12000000000 B oD
reduceBykey

Bl RDD

Q000000000 groupByKey
I DataFrame

G000000000

000000000

0 L x L | |

fferation

What can the optimizer do now?

e Sort on the serialized data

e Understand the aggregate (“partial aggregates™)
o Could sort of do this before but not as awesomely, and only if we used
reduceByKey - not groupByKey

e Pack bits nice and tight

What are relational transformers like?

Many familiar faces are back with a twist:

o filter

e join

e groupBy - Now safe!
And some new ones:

e select

e window

e sql (register as a table and run “arbitrary” SQL)
o efc.

So whats this new groupBy?

No longer causes explosions like RDD groupBy
o Able to introspect and pipeline the aggregation

Returns a GroupedData (or GroupedDataset)

Makes it easy to perform multiple aggregations

Built in shortcuts for aggregates like avg, min, max
Longer list at
http.//spark.apache.org/docs/latest/api/scala/index.htmi#
org.apache.spark.sql.functions$

Allows the optimizer to see what aggregates are being
performed

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$

Easily compute multiple aggregates:

|

Isﬁc;tdAtél‘ger';‘ i

df.groupBy("age").agg(min("hours-per-week"),
avg("hours-per-week"),
max("capital-gain"))

@4 ACARD GAME

P, FYP1NAING FORPEOPLE WHO ARE INTO m
But where Datasets explode” KITTENS _eshuocasos

AND SOMETIMES GOATS.

e |terative algorithms - large plans

e Some push downs are sad pandas :(

e Default shuffle size is sometimes too small for big data
(200 partitions)

e Default partition size when reading in is also sad

http://www.explodingkittens.com/

High Performan

Spark

High Performance Spark!

Focused on how to scale your Spark jobs

You can buy it from O’Reilly - http://bit.ly/highPerfSpark
Get notified when in print on Amazon:

e http://www.highperformancespark.com
e https://twitter.com/highperfspark

http://bit.ly/highPerfSpark
http://www.highperformancespark.com
http://www.highperformancespark.com
https://twitter.com/highperfspark
https://twitter.com/highperfspark

Where to go from here?

Just getting started: Paco Nathan's video

Spark API docs

Spark summit youtube videos (TheApacheSpark on YT)
Spark & Everything (“Weekend Project”) @ 2:30 in
Palais Atelier

Reading the source code - not that bad?

https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiy1cj5mrnUAhVCVhQKHSm4BfkQtwIIJjAA&url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEuWDz2Vb1Io&usg=AFQjCNGS9hY3IlVKhRAVBmxAaauk9o-FfA
https://www.youtube.com/user/TheApacheSpark

PySpark Users: Have some simple
ye! UDFs’you wish ran faster you are -

~ willing to share?: "
_ B hitp://bit.ly/pySparkUDF 7
Will tweet results &
oy eventually” @holdenkarau

g >~ . -' ‘ \ { -'
If you care.about SP8MRgsting and
don’t hate surveys 2 I

http://bit.ly/holde

K thnxek

-f‘e-!‘

-

Pssst: Have feedback on the presentation? Give me a shout (holden@pigscanfly.ca) if you feel comfortable
doing so :) -

http://bit.ly/holdenTestingSpark
http://bit.ly/holdenTestingSpark
https://twitter.com/holdenkarau
http://bit.ly/pySparkUDF
http://bit.ly/pySparkUDF
mailto:holden@pigscanfly.ca

Our final bit of magic today (Python & co):

Spark is written in Scala (runs on the JVM)

Users want to work in their favourite language
Python, R, C#, etc. all need a way to talk to the JVM
How expensive could IPC be anyways? :P

(Time Permitting)

to Py

N

k detour i

uic

¢

TSRS > TP
BRI wasvamim
St 'ﬁn._mﬂ_ 3 T

.

Spark in Scala, how does PySpark work?

e Py4J + pickling + magic
o This can be kind of slow sometimes

e RDDs are generally RDDs of pickled objects
e Spark SQL (and DataFrames) avoid some of this

So what does that look like?

Worker 1

. 4
Driver =S <P
Java pipe

Ao S
)

Worker K
S,

lva_PIPE

So how does this break?

e Data from Spark worker serialized and piped to Python

worker
o Multiple iterator-to-iterator transformations are still pipelined :)

e Double serialization cost makes everything more
expensive

e Python worker startup takes a bit of extra time

e Python memory isn’t controlled by the JVM - easy to go
over container limits if deploying on YARN or similar

e etc.

P
g 2 &P
\ Al =

g

What do the Python gnomes look like? i

self.is cached = True
javaStoragelLevel =

self.ctx. getJavaStoragelLevel(storagelLevel)
self. jrdd.persist(javaStoragelLevel)
return self

Spark specific terms in this talk 2
THE FUCK IS THIS

e RDD

o Resilient Distributed Dataset - Like a distributed collection. Supports
many of the same operations as Seq’s in Scala but automatically
distributed and fault tolerant. Lazily evaluated, and handles faults by
recompute. Any* Java or Kyro serializable object.

e DataFrame
o Spark DataFrame - not a Pandas or R DataFrame. Distributed,
supports a limited set of operations. Columnar structured, runtime
schema information only. Limited* data types.

e Dataset
o Compile time typed version of DataFrame (templated). The future!
(not exclusively)

Magic part #1: the DAG

e |n Spark most of our work is done by transformations
o Things like map

e Transformations return new RDDs or DataFrames
representing this data

e The RDD or DataFrame however doesn’t really “exist”

e RDD & DataFrames are really just “plans” of how to
make the data show up if we force Spark’s hand

e tl;dr - the data doesn’t exist until it “has” to

The DAG

Stage 205 (skipped) Stage 206

wholeTextFiles Exchange

!

fliunsim.emal

InMempryTableScan

$

WholeStageCodegen

H

mgpPartitions

mapPartitions

$

WholeStageCodegen

The query plan

ExistingRDD

number of output rows: 4

WholeStageCodegen
9 ms (0 ms, 0 ms, 6 ms)

Project

HashAggregate
number of output rows: 100

aggregate time total (min, med, max):
0 ms (0 ms, 0 ms, 0 ms)

Exchange

data size total (min, med, max):
1500.0 B (15.0 B, 15.0 B, 15.0 B)

WholeStageCodegen
5 ms (5 ms, 5 ms, 5 ms)

h
HashAggregate
number of output rows: 1

aggregate time total (min, med, max):
5 ms (& ms, 5 ms, 5 ms)

Susanne Nilsson

Word count (in python)

lines = sc.textFile(src)
words = lines.flatMap(lambda x: x.split(" "))
word_count =
(words.map(lambda x: (x, 1))
reduceByKey(lambda x, y: x+y))
word_count.saveAsTextFile(“output”)

Word count (in python) d

lines = sc.textFile(src)
words = lines.flatMap(lambda x: x.split(" "))
word_count =

(words.map(lambda x: (x, 1)) No data is read or

processed until after

reduceByKey(lambda X, y: x+y)) thisline

word_count.saveAsTextFile("output”)

\ This is an “action”
which forces spark to
evaluate the RDD

How the DAG magic is awesome:

e Pipelining (can put maps, filter, flatMap together)
e C(Can do interesting optimizations by delaying work

e \We use the DAG to recompute on failure
o (writing data out to 3 disks on different machines is so last season)
o Orthe DAG puts the R is Resilient RDD, except DAG doesn’t have an
R (

And where it reaches its limits:

e It doesn’t have a whole program view
o Can only see up to the action, can’t see into the next one

o So we have to help Spark out and cache
e (Combining the transformations together makes it hard

to know what failed

e |t can only see the pieces it understands
o can see two maps but can’t tell what each map is doing

And back to magic with Dataframes:

Python Compute average

600000000 B ROD
reduceB...
B ROD
450000000 groupBy...
I DataFrame
groupBy
300000000
150000000

*Note: do not compare absolute #s with previous graph -
different dataset sizes because | forgot to write it down when |
made the first one.

The “future*”: Faster interchange

e Faster interchange between Python and Spark (e.g.
Tungsten or Apache Arrow) (SPARK-13391 &

SPARK-13534 + it's PR)
e Willing to share your Python UDFs for benchmarking? -

http://bit.ly/pySparkUDF

*The future may or may not have better performance than today. But bun-bun the bunny has some lettuce so its
ok!

https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://arrow.apache.org
https://issues.apache.org/jira/browse/SPARK-13391
https://issues.apache.org/jira/browse/SPARK-13534
https://github.com/apache/spark/pull/15821
https://issues.apache.org/jira/browse/SPARK-13534
http://bit.ly/pySparkUDF
http://bit.ly/pySparkUDF

Spark Videos

e Apache Spark Youtube Channel saktonCisSE o

e My Spark videos on YouTube -
o http://bit.ly/holdenSparkVideos

e Spark Summit 2014 training
e Paco’s Introduction to Apache Spark

https://www.youtube.com/channel/UCRzsq7k4-kT-h3TDUBQ82-w
https://www.youtube.com/channel/UCRzsq7k4-kT-h3TDUBQ82-w
http://bit.ly/holdenSparkVideos
http://bit.ly/holdenSparkVideos
http://bit.ly/holdenSparkVideos
http://bit.ly/holdenSparkVideos
http://bit.ly/holdenSparkVideos
https://spark-summit.org/2014/training
https://spark-summit.org/2014/training
http://bit.ly/intro-to-apache-spark-paco-video

OREILLY"

nark

_ "IN ACTION

Fast Data Processing
with Spark
Second Edition

w, Andy Konwinski,
Patrick Wendell & Matei Zaharia

Fast Datla . Spark in Action
Processing with | ez

Spark
(2nd edition)

OREILLY

Tomasz Drabas, Denny Lee

High Performance

Spark

Advanced
Analytics with

DipIS

Learning

Fast Data Processing
with Spark

PySpark

B TR

Sandy Ryza, Uri Laserson,

Fast Data e :
Processing with P s
Spark Advanced
, P ,
Learning PySpark (Out of Date) Analytics with ~ High Performance Spark

Spark

http://bit.ly/learning-spark-presentation
http://bit.ly/learning-spark-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/advanced-analytics-spark
http://www.manning.com/bonaci/
http://www.highperformancespark.com

High Performance Spark!

Available from O'Reilly TODAY - Amazon print “soon”
e Buy from O'Reilly - http://bit.ly/highPerfSpark
Get notified when in print on Amazon:

e http://www.highperformancespark.com
e https://twitter.com/highperfspark

* Early Release means extra mistakes, but also a chance to help us make a more awesome
book.

http://bit.ly/highPerfSpark
http://www.highperformancespark.com
http://www.highperformancespark.com
https://twitter.com/highperfspark
https://twitter.com/highperfspark

And some upcoming talks: ﬂ

e June
o Berlin Buzzwords
o Scala Swarm (Porto, Portugal)

o July
o Scala Up North

e August
o PyCon AU

http://scala-swarm.org/
http://scala-swarm.org/

