
(A brief tour of)

The Magic Behind Spark
Holden Karau
@holdenkarau

https://twitter.com/holdenkarau
https://twitter.com/holdenkarau

Who am I?
● My name is Holden Karau
● Prefered pronouns are she/her
● I’m a Principal Software Engineer at IBM’s Spark Technology Center
● Apache Spark committer
● previously Alpine, Databricks, Google, Foursquare & Amazon
● co-author of High Performance Spark & Learning Spark (+ more)
● Twitter: @holdenkarau
● Slideshare http://www.slideshare.net/hkarau
● Linkedin https://www.linkedin.com/in/holdenkarau
● Github https://github.com/holdenk
● Related Spark Videos http://bit.ly/holdenSparkVideos

http://www.spark.tc/
https://twitter.com/holdenkarau
http://www.slideshare.net/hkarau
https://www.linkedin.com/in/holdenkarau
https://github.com/holdenk
http://bit.ly/holdenSparkVideos

Spark Technology
Center

4

IBM
Spark
Technology
Center

Founded in 2015.
Location:

Physical: 505 Howard St., San Francisco CA
Web: http://spark.tc Twitter: @apachespark_tc

Mission:
Contribute intellectual and technical capital to the Apache Spark
community.
Make the core technology enterprise- and cloud-ready.
Build data science skills to drive intelligence into business
applications — http://bigdatauniversity.com

Key statistics:
About 50 developers, co-located with 25 IBM designers.
Major contributions to Apache Spark http://jiras.spark.tc
Apache SystemML is now an Apache Incubator project.
Founding member of UC Berkeley AMPLab and RISE Lab
Member of R Consortium and Scala Center

Spark Technology
Center

http://spark.tc/
https://twitter.com/apachespark_tc
http://bigdatauniversity.com/
http://jiras.spark.tc/

Who do I think you all are?

● Nice people*
● Possibly some knowledge of Apache Spark?
● Interested in understanding a bit about how Spark

works?
● Want to make your spark jobs more efficient
● Familiar-ish with Scala or Java or Python

Amanda

Why people come to Spark:
Well this MapReduce
job is going to take
16 hours - how long
could it take to learn
Spark?

dougwoods

Why people come to Spark:
My DataFrame won’t fit
in memory on my cluster
anymore, let alone my
MacBook Pro :(Maybe
this Spark business will
solve that...

brownpau

Plus a little magic :)

Steven Saus

What is the “magic” of Spark?

● DAG / “query plan” is the root of much of it
○ Think the person behind the curtain

● RDDs: Optimizer to pipeline steps
● Resiliency: recover from failures rather than protecting

from failures.
● “In-memory” + “spill-to-disk”
● Functional programming to build the DAG for “free”
● Select operations without deserialization

Richard Gillin

Not enough time for all the magic

● Some of it was covered yesterday in the morning’s
Spark talk

● If you missed that talk the rest of the magic is also in my
GOTO Chicago talk -
https://gotochgo.com/2017/sessions/33 (slides & video)

https://gotochgo.com/2017/sessions/33
https://gotochgo.com/2017/sessions/33

Your data is magically distributed

● At some point the RDD or DataFrame is forced to exist
● Then Spark splits up the data on a bunch of different

machines
● The default looks “like”* your input data source (often)
● If the data needs to be joined (or similar) Spark does a

“shuffle” so it knows which keys are where
● Partioners in Spark are deterministic on key input (e.g.

for any given key they must always send to the same
partition)

ncfc0721

When we say distributed we mean...

Key-skew to the anti-rescue… :(

● Keys aren’t evenly distributed
○ Sales by zip code, or records by city, etc.

● groupByKey will explode (but it's pretty easy to break)
● We can have really unbalanced partitions

○ If we have enough key skew sortByKey could even fail
○ Stragglers (uneven sharding can make some tasks take much longer)
○ We can add some noise if we need to

cinnamonster

(94110, A, B)
(94110, A, C)
(10003, D, E)
(94110, E, F)

(94110, A, R)
(10003, A, R)
(94110, D, R)
(94110, E, R)

(94110, E, R)
(67843, T, R)
(94110, T, R)
(94110, T, R)

RDDs + lambdas = Black boxes

● Spark can’t see inside your lambdas
● Spark can optimize the maps / flatmaps/ reduceByeKey /

etc - but not the things inside of that.
● If you load data in then only access some fields or filter

Spark can’t use that information :(

_torne

key-skew + black boxes == more sadness

● There is a worse way to do WordCount
● We can use the seemingly safe thing called groupByKey
● Then compute the sum
● But since it’s on a slide of “more sadness” we know where

this is going...

_torne

Bad word count :(
words = rdd.flatMap(lambda x: x.split(" "))

wordPairs = words.map(lambda w: (w, 1))

grouped = wordPairs.groupByKey()

counted_words = grouped.mapValues(lambda counts: sum(counts))

counted_words.saveAsTextFile("boop")

Tomomi

GroupByKey

48kb

385kb

So what did we do instead?
● reduceByKey

○ Works when the types are the same (e.g. in our summing version)

● aggregateByKey
○ Doesn’t require the types to be the same (e.g. computing stats model or similar)

Allows Spark to pipeline the reduction & skip making the list

We also got a map-side reduction (note the difference in shuffled read)

Effectively allows Spark to “understand” our operation more

Note: we can’t use the “noise” approach from the shuffle tricks to replace
groupByKey

reduceByKey

385kb

11kb

Opening the black box: Datasets / DFs

● Operations can be written in a DSL Spark can
understand

● Can “escape” back to RDDs and arbitrary lambdas
● But give you more options to “help” the optimized
● groupBy returns a GroupedDataStructure and offers

special aggregates
● Selects can push filters down for us*
● Magic codegen for certain statements :D
● Etc.

Using Datasets to mix functional & relational
ds.filter($"happy" === true).

 select($"attributes"(0).as[Double]).

 reduce((x, y) => x + y)

A typed query (specifies the
return type). Without the as[]
will return a DataFrame
(Dataset[Row])

Traditional functional
reduction:
arbitrary scala code :)

Robert Couse-Baker

And functional style maps:
/**

 * Functional map + Dataset, sums the positive attributes for the

pandas

 */

def funMap(ds: Dataset[RawPanda]): Dataset[Double] = {

 ds.map{rp => rp.attributes.filter(_ > 0).sum}

}

Functional & Relational wordcount (in Python)
In Spark 2+ we need to convert to an RDD for functional queries

Note: we could also do this by registering a UDF.

words = df.select("panda_name").rdd().flatMap(

 lambda row: row.panda_name.split(" "))

Create a new DataFrame to count the number of words

words_df = words.map(lambda w: Row(word=w, cnt=1)).toDF()

word_counts = words_df.groupBy("word").sum()

How much faster can it be?
Andrew Skudder

What can the optimizer do now?

● Sort on the serialized data
● Understand the aggregate (“partial aggregates”)

○ Could sort of do this before but not as awesomely, and only if we used
reduceByKey - not groupByKey

● Pack bits nice and tight

Capes Treasures

What are relational transformers like?

Many familiar faces are back with a twist:
● filter
● join
● groupBy - Now safe!
And some new ones:
● select
● window
● sql (register as a table and run “arbitrary” SQL)
● etc.

So whats this new groupBy?

● No longer causes explosions like RDD groupBy
○ Able to introspect and pipeline the aggregation

● Returns a GroupedData (or GroupedDataset)
● Makes it easy to perform multiple aggregations
● Built in shortcuts for aggregates like avg, min, max
● Longer list at

http://spark.apache.org/docs/latest/api/scala/index.html#
org.apache.spark.sql.functions$

● Allows the optimizer to see what aggregates are being
performed

Sherrie Thai

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.functions$

Easily compute multiple aggregates:
df.groupBy("age").agg(min("hours-per-week"),

 avg("hours-per-week"),

 max("capital-gain"))

PhotoAtelier

But where Datasets explode?

● Iterative algorithms - large plans
● Some push downs are sad pandas :(
● Default shuffle size is sometimes too small for big data

(200 partitions)
● Default partition size when reading in is also sad

http://www.explodingkittens.com/

High Performance Spark!

Focused on how to scale your Spark jobs

You can buy it from O’Reilly - http://bit.ly/highPerfSpark
Get notified when in print on Amazon:
● http://www.highperformancespark.com
● https://twitter.com/highperfspark

http://bit.ly/highPerfSpark
http://www.highperformancespark.com
http://www.highperformancespark.com
https://twitter.com/highperfspark
https://twitter.com/highperfspark

Where to go from here?

● Just getting started: Paco Nathan’s video
● Spark API docs
● Spark summit youtube videos (TheApacheSpark on YT)
● Spark & Everything (“Weekend Project”) @ 2:30 in

Palais Atelier
● Reading the source code - not that bad?

Merlijn Hoek

https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiy1cj5mrnUAhVCVhQKHSm4BfkQtwIIJjAA&url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DEuWDz2Vb1Io&usg=AFQjCNGS9hY3IlVKhRAVBmxAaauk9o-FfA
https://www.youtube.com/user/TheApacheSpark

k thnx bye!

If you care about Spark testing and
don’t hate surveys:
http://bit.ly/holdenTestingSpark

Will tweet results
“eventually” @holdenkarau

PySpark Users: Have some simple
UDFs you wish ran faster you are
willing to share?:
http://bit.ly/pySparkUDF

Pssst: Have feedback on the presentation? Give me a shout (holden@pigscanfly.ca) if you feel comfortable
doing so :)

http://bit.ly/holdenTestingSpark
http://bit.ly/holdenTestingSpark
https://twitter.com/holdenkarau
http://bit.ly/pySparkUDF
http://bit.ly/pySparkUDF
mailto:holden@pigscanfly.ca

Our final bit of magic today (Python & co):

● Spark is written in Scala (runs on the JVM)
● Users want to work in their favourite language
● Python, R, C#, etc. all need a way to talk to the JVM
● How expensive could IPC be anyways? :P
● (Time Permitting)

A (possible) quick detour into PySpark’s

Photo by Bill Ward

Spark in Scala, how does PySpark work?

● Py4J + pickling + magic
○ This can be kind of slow sometimes

● RDDs are generally RDDs of pickled objects
● Spark SQL (and DataFrames) avoid some of this

kristin klein

So what does that look like?

Driver

py4j

Worker 1

Worker K

pipe

pipe

So how does this break?

● Data from Spark worker serialized and piped to Python
worker
○ Multiple iterator-to-iterator transformations are still pipelined :)

● Double serialization cost makes everything more
expensive

● Python worker startup takes a bit of extra time
● Python memory isn’t controlled by the JVM - easy to go

over container limits if deploying on YARN or similar
● etc.

What do the Python gnomes look like?
 self.is_cached = True

 javaStorageLevel =

self.ctx._getJavaStorageLevel(storageLevel)

 self._jrdd.persist(javaStorageLevel)

 return self

Spark specific terms in this talk

● RDD
○ Resilient Distributed Dataset - Like a distributed collection. Supports

many of the same operations as Seq’s in Scala but automatically
distributed and fault tolerant. Lazily evaluated, and handles faults by
recompute. Any* Java or Kyro serializable object.

● DataFrame
○ Spark DataFrame - not a Pandas or R DataFrame. Distributed,

supports a limited set of operations. Columnar structured, runtime
schema information only. Limited* data types.

● Dataset
○ Compile time typed version of DataFrame (templated). The future!

(not exclusively)

skdevitt

Magic part #1: the DAG

● In Spark most of our work is done by transformations
○ Things like map

● Transformations return new RDDs or DataFrames
representing this data

● The RDD or DataFrame however doesn’t really “exist”
● RDD & DataFrames are really just “plans” of how to

make the data show up if we force Spark’s hand
● tl;dr - the data doesn’t exist until it “has” to

Photo by Dan G

The DAG The query plan
Susanne Nilsson

Word count (in python)

lines = sc.textFile(src)
words = lines.flatMap(lambda x: x.split(" "))
word_count =
 (words.map(lambda x: (x, 1))
 .reduceByKey(lambda x, y: x+y))
word_count.saveAsTextFile(“output”)

Photo By: Will
Keightley

Word count (in python)

lines = sc.textFile(src)
words = lines.flatMap(lambda x: x.split(" "))
word_count =
 (words.map(lambda x: (x, 1))
 .reduceByKey(lambda x, y: x+y))
word_count.saveAsTextFile("output")

No data is read or
processed until after
this line

This is an “action”
which forces spark to
evaluate the RDD

daniilr

How the DAG magic is awesome:

● Pipelining (can put maps, filter, flatMap together)
● Can do interesting optimizations by delaying work
● We use the DAG to recompute on failure

○ (writing data out to 3 disks on different machines is so last season)
○ Or the DAG puts the R is Resilient RDD, except DAG doesn’t have an

R :(

Matthew Hurst

And where it reaches its limits:

● It doesn’t have a whole program view
○ Can only see up to the action, can’t see into the next one
○ So we have to help Spark out and cache

● Combining the transformations together makes it hard
to know what failed

● It can only see the pieces it understands
○ can see two maps but can’t tell what each map is doing

r2hox

And back to magic with Dataframes:
Andrew Skudder

*Note: do not compare absolute #s with previous graph -
different dataset sizes because I forgot to write it down when I
made the first one.

The “future*”: Faster interchange

● Faster interchange between Python and Spark (e.g.
Tungsten or Apache Arrow) (SPARK-13391 &
SPARK-13534 + it’s PR)

● Willing to share your Python UDFs for benchmarking? -
http://bit.ly/pySparkUDF

*The future may or may not have better performance than today. But bun-bun the bunny has some lettuce so its
ok!

https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://arrow.apache.org
https://issues.apache.org/jira/browse/SPARK-13391
https://issues.apache.org/jira/browse/SPARK-13534
https://github.com/apache/spark/pull/15821
https://issues.apache.org/jira/browse/SPARK-13534
http://bit.ly/pySparkUDF
http://bit.ly/pySparkUDF

Spark Videos

● Apache Spark Youtube Channel
● My Spark videos on YouTube -

○ http://bit.ly/holdenSparkVideos
● Spark Summit 2014 training
● Paco’s Introduction to Apache Spark

Paul Anderson

https://www.youtube.com/channel/UCRzsq7k4-kT-h3TDUBQ82-w
https://www.youtube.com/channel/UCRzsq7k4-kT-h3TDUBQ82-w
http://bit.ly/holdenSparkVideos
http://bit.ly/holdenSparkVideos
http://bit.ly/holdenSparkVideos
http://bit.ly/holdenSparkVideos
http://bit.ly/holdenSparkVideos
https://spark-summit.org/2014/training
https://spark-summit.org/2014/training
http://bit.ly/intro-to-apache-spark-paco-video

Learning Spark

Fast Data
Processing with
Spark
(Out of Date)

Fast Data
Processing with
Spark
(2nd edition)

Advanced
Analytics with
Spark

Spark in Action

High Performance SparkLearning PySpark

http://bit.ly/learning-spark-presentation
http://bit.ly/learning-spark-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-presentation
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/fast-data-processing-with-spark-2nd-edition
http://bit.ly/advanced-analytics-spark
http://www.manning.com/bonaci/
http://www.highperformancespark.com

High Performance Spark!

Available from O’Reilly TODAY - Amazon print “soon”
● Buy from O’Reilly - http://bit.ly/highPerfSpark
Get notified when in print on Amazon:
● http://www.highperformancespark.com
● https://twitter.com/highperfspark

* Early Release means extra mistakes, but also a chance to help us make a more awesome
book.

http://bit.ly/highPerfSpark
http://www.highperformancespark.com
http://www.highperformancespark.com
https://twitter.com/highperfspark
https://twitter.com/highperfspark

And some upcoming talks:

● June
○ Berlin Buzzwords
○ Scala Swarm (Porto, Portugal)

● July
○ Scala Up North

● August
○ PyCon AU

http://scala-swarm.org/
http://scala-swarm.org/

