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Bloom County cartoon by Berkeley Breathed
https://www.berkeleybreathed.com/
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Sometimes, the most powerful 
solutions are very basic.

That doesn’t necessarily make them 
easy.

Bloom County cartoon by Berkeley Breathed
https://www.berkeleybreathed.com/
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What makes machine learning 
work?
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The data
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Find the ML code

Figure based on “Hidden Technical Debt in Machine Learning Systems” by Scully et al. (Google, Inc) 
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
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Only a small part of ML systems is the learning code.  
The rest is vast infrastructure of data collection and processing.

ML
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Things That Matter in Data Preparation

I.  What’s in your data? (really?)

II.  How do you know what features to build?

III. How do you know what you did?
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.

Labs in Canada froze blood samples for years in case the samples 
might contain valuable information

 They did. 

• Modern genetic techniques revealed key disease data

 Correlated with outcomes for the donor patients

• The data was preserved before the analysis was even begun.

Retroactive Value in Data
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might contain valuable information
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 Correlated with outcomes for the donor patients

The data was preserved before the analysis was even begun

Retroactive Value in Data

frozen
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Things That Matter in Data Preparation

I.  What’s in your data? (really?)

II.  How do you know what features to build?
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Thanks to these data scientists for their stories

Joe Blue
Director Global Data Science,
MapR

Ted Dunning
Chief Technical Officer,
MapR
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A loyal fan of Berlin Buzzwords

Ted Dunning, Berlin 2018
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Machine Learning in the Real World

vs      Kaggle 

https://visibleearth.nasa.gov/view.php?id=56229

https://visibleearth.nasa.gov/view.php?id=56229
https://visibleearth.nasa.gov/view.php?id=56229
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I. What’s in Your Data (Really)?

Verify!  
• Examine data
• Ask questions (domain knowledge matters)
• Make sure what you say is what they hear

Explore!
• Find out what you’ve got
• Sometimes data exploration gives you the solution
• Visual inspection & draw pictures
• Example tool: Apache Drill
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Verify!

Example:

Fraud detection model trained with data from column named “fraud”

Oops. 

It was the fraud analyst ID, not a ranking for likely risk of fraud 
events. 
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Verify!

Example:

Fraud detection model trained with data from column named “fraud”

Oops. 

It was the fraud analyst ID, not a flag for known fraud

Clear communication is essential.
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Fun example:  Can you spot the pattern tea vs chai?

tea

chai

https://wals.info/chapter/138

https://wals.info/chapter/138


© 2019 Ellen Friedman 2626

Explore!

Example:

Big European service provider had complaints of poor response time.

But average response time in the reports was always fine…?!

Hard problem!  Expect to use sophisticated ML to find the problem.

1st step: explore data using Apache Drill.

Immediately discover dropped data. Easy solution: ML not needed.
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II.  How do you know what features to build?

Features are built, not just chosen

There’s no “right” answer: trial and error (success) to find winners

What makes good features?

Performance Feasibility Interpretability
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Think through behaviors
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Build Features for Fraud Detection
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What would you do if you were 
a fraudster?
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Behaviors That Point to Fraud

Fraudster has stolen debit card, but doesn’t know pin number

Tries to use it as credit card with signature: easier to fake 
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Behaviors That Point to Fraud

Fraudster has stolen debit card, but doesn’t know pin number

Tries to use it as credit card with signature: easier to fake 

Leaves clues you can discover: Make a feature from this change

9990
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More Behaviors That Point to Fraud

• Domain expert says “Fraudsters often do a probe transaction at a 
gas station just before making their big fraud transaction(s).”

• How do you build a feature to detect probe behaviors?

• Risk tables can be constructed:
–  to find a probe event or
–  to find the main fraud event
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We Build a "Risk Table"

When they say "gas station", we think "merchant type”

When they say "just before", we think of several possible time periods

Take many transactions grouped by consumer, ordered by time
• For each fraud, count the merchant types in the preceding window of time
• For lots of non-frauds, count the merchant types in the preceding window

A risk table has the (log of the) ratio of the fraud counts to the non-fraud counts

for each merchant type, for each window size
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Building a Risk Table

A bigger positive value for ratio = more risk
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Look at recent events for 
a particular card
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Data Augmentation

Augment data: add external information

Example: 

• You have merchant ID

• Look up store location

• Give model location as a feature
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Data Transformation

Simple data transformation can be powerful

Domain knowledge helps you know what to do

Example: 

• Data is value for amount of €

• Take log of value because % gives a more meaningful feature

 10 €  12 €   is very different change than 100 €  102 €
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Velocity as a Feature

Commonly used

How many ways can you describe velocity?

Domain knowledge helps you know what to do

Examples: 

• Geo-distance / time

• # events / time

• € / time
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III. How do you know what you did?

Code:

Document the reasoning behind code

Version control for code

Data:

Document how training data was prepared 
• Which features? Why?
• How were they built?

Version control for the training data



© 2019 Ellen Friedman 4545



© 2019 Ellen Friedman 4646

What is the role of data in building an ML model?

Blog post:

“Computer Science vs Data Science” by Ted Dunning

https://mapr.com/blog/data-science-vs-computer-science/

https://mapr.com/blog/data-science-vs-computer-science/
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Data makes the model

Different training data, different model
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Data makes the model

Different training data, different model
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Based on Bloom County cartoon by Berkeley Breathed
https://www.berkeleybreathed.com/
 

Is it OK if only one person 
can compile my production 
source code?

https://www.berkeleybreathed.com/
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The same applies for data used to 
build a machine learning model
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Notes to Your Future Self
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Machine Learning is Iterative Process

• Held-out training data is used for 
evaluation

• Usually have much more data in 
training than in production

• Don’t fall for the myth of unitary 
model: Lots of models, lots of 
trials
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Notebooks are Excellent
Notes to self: A good way to remember what you’ve done

A good way to communicate as well

https://jupyter.org/ https://zeppelin.apache.org/

https://jupyter.org/
https://zeppelin.apache.org/
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Code Versioning Via Git
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Code Versioning Via Git
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Easy Data Version Control with Snapshots

Snapshot 1

Snapshots based on MapR volumes

True point-in-time version of data

Less expensive than copying

Fully distributed across cluster
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Valohai Uses Snapshots for Their ML Pipeline Service

Eero Laaksonen & Juha Kilii from Finnish company Valohai demonstrate how they do version 
control using snapshots in this webinar with Ian Downard (MapR):  
 
https://mapr.com/webinars/a-guide-to-version-control-for-machine-learning/

https://mapr.com/webinars/a-guide-to-version-control-for-machine-learning/
https://mapr.com/webinars/a-guide-to-version-control-for-machine-learning/


© 2019 Ellen Friedman 5858

• For Training Data:

• Pathname of raw data snapshot
• Git reference for data preparation 

process (feature extraction)

• For Code (Delivered Model):

• The model
• Pathname of training data 

snapshot
• Git reference for learning script

o Includes random number seed
o Includes knob settings for 

learning process
o The learning code

This is What You Track
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Data Unit Testing

Does what you’re doing now match what you did before?

Test that: build a way to see if there are changes that matter.

• Test outputs: Maybe what changed doesn’t matter

• Test inputs: Another good approach (see Google paper)
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Data Validation Article from Google Research

https://www.sysml.cc/doc/2019/167.pdf

https://www.sysml.cc/doc/2019/167.pdf
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https://mapr.com/ebook/machine
-learning-logistics/

 
https://mapr.com/ebook/ai-and-a
nalytics-in-production/

Free eBooks courtesy of MapR

https://mapr.com/ebook/machine-learning-logistics/
https://mapr.com/ebook/machine-learning-logistics/
https://mapr.com/ebook/ai-and-analytics-in-production/
https://mapr.com/ebook/ai-and-analytics-in-production/
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Please support women in tech – help build 
girls’ dreams of what they can accomplish

© Ellen Friedman 2015#womenintech  #datawomen
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Thank you ! 
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