Doing Data: Data Prep for Machine Learning

Ellen Friedman, PhD 18 June 2019 Berlin Buzzwords #bbuzz Contact Information

Ellen Friedman, PhD

Committer Apache Drill & Apache Mahout projects O'Reilly author

Email <u>ellenf@apache.org</u>

Twitter @Ellen_Friedman

Today: #bbuzz

Bloom County cartoon by Berkeley Breathed https://www.berkeleybreathed.com/

Bloom County cartoon by Berkeley Breathed https://www.berkeleybreathed.com/

Sometimes, the most powerful solutions are very basic.

Bloom County cartoon by Berkeley Breathed https://www.berkeleybreathed.com/

Sometimes, the most powerful solutions are very basic.

That doesn't necessarily make them easy.

What makes machine learning work?

The data

Find the ML code

Only a small part of ML systems is the learning code. The rest is vast infrastructure of data collection and processing.

Figure based on "Hidden Technical Debt in Machine Learning Systems" by Scully et al. (Google, Inc) https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

Things That Matter in Data Preparation

- I. What's in your data? (really?)
- II. How do you know what features to build?
- III. How do you know what you did?

.

Labs in Canada froze blood samples for years in case the samples might contain valuable information

CONCIALED WITH OULCOMES IN THE UNION PALIENTS

.

Labs in Canada froze blood samples for years in case the samples might contain valuable information

✓ They did

CONCIALED WITH OULCOMES TO THE UDIOL PATIENTS

Labs in Canada froze blood samples for years in case the samples might contain valuable information

✓ They did

Modern genetic techniques revealed key disease data

✓ Correlated with outcomes for the donor patients

Labs in Canada froze blood samples for years in case the samples might contain valuable information

✓ They did

Modern genetic techniques revealed key disease data

✓ Correlated with outcomes for the donor patients

The data was preserved *before* the analysis was even begun.

Labs in Canada froze blood samples for years in case the samples might contain valuable information

✓ They did

Modern genetic techniques revealed key disease data

Correlated with outcomes for the donor patients frozen

The data was preserved *before* the analysis was even begun

Things That Matter in Data Preparation

- I. What's in your data? (really?)
- II. How do you know what features to build?
- III. How do you know what you did?

Thanks to these data scientists for their stories

AGE ATEL

Joe Blue Director Global Data Science, MapR Ted Dunning Chief Technical Officer, MapR

A loyal fan of Berlin Buzzwords

Ted Dunning, Berlin 2018

Machine Learning in the Real World

VS

https://visibleearth.nasa.gov/view.php?id=56229

I. What's in Your Data (Really)?

Verify!

- Examine data
- Ask questions (domain knowledge matters)
- Make sure what you say is what they hear

Explore!

- Find out what you've got
- Sometimes data exploration gives you the solution
- Visual inspection & draw pictures
- Example tool: Apache Drill

Verify!

_

Example:

Fraud detection model trained with data from column named "fraud"

Verify!

Example:

Fraud detection model trained with data from column named "fraud"

Oops.

It was the fraud analyst ID, not a flag for known fraud

Verify!

Example:

Fraud detection model trained with data from column named "fraud"

Oops.

It was the fraud analyst ID, not a flag for known fraud

Clear communication is essential.

Fun example: Can you spot the pattern tea vs chai?

https://wals.info/chapter/138

Explore!

Example:

Big European service provider had complaints of poor response time. But average response time in the reports was always fine...?!

Hard problem! Expect to use sophisticated ML to find the problem.

Explore!

Example:

Big European service provider had complaints of poor response time. But average response time in the reports was always fine...?!

Hard problem! Expect to use sophisticated ML to find the problem.

1st step: explore data using Apache Drill.

Explore!

Example:

Big European service provider had complaints of poor response time. But average response time in the reports was always fine...?!

Hard problem! Expect to use sophisticated ML to find the problem.

1st step: explore data using Apache Drill.

Immediately discover dropped data. Easy solution: ML not needed.

II. How do you know what features to build?

Features are built, not just chosen

There's no "right" answer: trial and error (success) to find winners

Think through behaviors

Build Features for Fraud Detection

What would you do if you were a fraudster?

Behaviors That Point to Fraud

Fraudster has stolen debit card, but doesn't know pin number

Tries to use it as credit card with signature: easier to fake

Behaviors That Point to Fraud

Fraudster has stolen debit card, but doesn't know pin number

Tries to use it as credit card with signature: easier to fake

9990 - William Shakpeard

Leaves clues you can discover: Make a feature from this change

More Behaviors That Point to Fraud

- Domain expert says "Fraudsters often do a probe transaction at a gas station just before making their big fraud transaction(s)."
- How do you build a feature to detect probe behaviors?
- Risk tables can be constructed:
 - to find a probe event or
 - to find the main fraud event

We Build a "Risk Table"

When they say "gas station", we think "merchant type"

When they say "just before", we think of several possible time periods

Take many transactions grouped by consumer, ordered by time

- For each fraud, count the merchant types in the preceding window of time
- For lots of non-frauds, count the merchant types in the preceding window

A risk table has the (log of the) ratio of the fraud counts to the non-fraud counts for each merchant type, for each window size

Building a Risk Table

Туре	Before frauds (100k samples)	Before non-fraud (1M samples)	Log Risk Ratio
gas station	60227	66639	2.20
tea room	157	10087	-1.86
hotel	1633	24720	-0.41
airline	1035	12389	-0.18
pizza delivery	28765	52838	1.69

A bigger positive value for ratio = more risk

Look at recent events for a particular card

2019-06-11T14:19:09Z, grocery, -0.1 2019-06-11T20:36:11Z, books, 0.1 2019-06-12T04:42:14Z, restaurant, 0.05 2019-06-12T09:30:08Z, books, 0.1 2019-06-12T12:07:03Z, gas station, 2.2

Туре	Before frauds (100k samples)	Before non-fraud (1M samples)	Log Risk Ratio
gas station	60227	66639	2.20
tea room	157	10087	-1.86
hotel	1633	24720	-0.41
airline	1035	12389	-0.18
pizza delivery	28765	52838	1.69

2019-06-11T14:19:09Z, grocery, -0.1 2019-06-11T20:36:11Z, books, 0.1 2019-06-12T04:42:14Z, restaurant, 0.05 2019-06-12T09:30:08Z, books, 0.1 2019-06-12T12:07:03Z, gas station, 2.2

Туре	Before frauds (100k samples)	Before non-fraud (1M samples)	Log Risk Ratio
gas station	60227	66639	2.20
tea room	157	10087	-1.86
hotel	1633	24720	-0.41
airline	1035	12389	-0.18
pizza delivery	28765	52838	1.69

Data Augmentation

Augment data: add external information

Example:

- You have merchant ID
- Look up store location
- Give model location as a feature

Data Transformation

Simple data transformation can be powerful

Domain knowledge helps you know what to do

Example:

- Data is value for amount of €
- Take log of value because % gives a more meaningful feature

10 € [] 12 € is very different change than 100 € [] 102 €

Velocity as a Feature

Commonly used

How many ways can you describe velocity?

Domain knowledge helps you know what to do

Examples:

- Geo-distance / time
- # events / time
- € / time

III. How do you know what you did?

Code:

Document the reasoning behind code Version control for code

Data:

Document how training data was prepared

- Which features? Why?
- How were they built?

Version control for the training data

What is the role of data in building an ML model?

Blog post:

"Computer Science vs Data Science" by Ted Dunning

https://mapr.com/blog/data-science-vs-computer-science/

Data makes the model

REFERENCE Ended of the office of the second second of the second se

Data makes the model

Different training data, different model

Based on Bloom County cartoon by Berkeley Breathed https://www.berkeleybreathed.com/

The same applies for data used to build a machine learning model

Notes to Your Future Self

Machine Learning is Iterative Process

- Held-out training data is used for evaluation
- Usually have much more data in training than in production
- Don't fall for the myth of unitary model: Lots of models, lots of trials

Notebooks are Excellent

Notes to self: A good way to remember what you've done

A good way to communicate as well

https://jupyter.org/

https://zeppelin.apache.org/

Code Versioning Via Git

T-DIGEST	۴	+•	14 III III III III		
Stage	All	Local	"master"	Q Subject, Auth	or, SHA
BRANCHES	Short SHA	Subje	ect	Author	Date
🔑 backup	ττταζος	Q Re	emove JDK / from CI testing	led Dunning	January 7, 20
\mu drej82-master	8bebf85		dd multi-merge to Log and Float histograms. Add comparison capabilitie	Ted Dunning	January 7, 20
P faster-merge	bc121cc	O El	iminated commons lang dependency, cleaned up some test hygiene	Ted Dunning	January 7, 20
	dbaf748	Ф М	lerge branch 'master' of https://github.com/tdunning/t-digest	Ted Dunning	December 18
	cdc196c	Ò	Fixed link to folly, closes #120	Ted Dunning	December 18
pountz-AbstractTDiges	779ab7b	0	Minor fixes after review by Otmar	Ted Dunning	December 18
🥲 🖓 master 🛛 🕑	f1953f1	ф м	loved Q-digest comparison to quality directory.	Ted Dunning	December 16
\mu new-article	804e4a0	0 U	pdated README with news	Ted Dunning	December 15
DEMOTEO	f52e1bf	ф м	lerge branch 'master' of https://github.com/tdunning/t-digest	Ted Dunning	December 15
REMOTES	e8ca847	Ò	Merge pull request #115 from ryanpbrewster/rpb/sort-bench	Ted Dunning	November 2, :
origin	da0e380	Ċ	Choose a random pivot	Ryan P. Brewster	September 13
TAGS	9d855d9	Ċ	Add benchmark for Sort on ordered input	Ryan P. Brewster	September 13
intee	b8e1148	0	Added two level merging to combat centroid smearing	Ted Dunning	December 15
SUBMODULES	72a1d6f	0	Added two level merging to combat centroid smearing	Ted Dunning	December 4,
OTHER	2ddb8cc	0	Unpacked some utility functions	Ted Dunning	December 3,
o men	1208ae0	¢/	Added scale function tests, small fixes. Also updated sizing.tex documen	Ted Dunning	November 1, :
	19fe38b	0	Added single pass test to verify quality of interpolation without incremen	Ted Dunning	October 31, 2

Code Versioning Via Git

T-DIGEST	५ +	+•	ta [44] [12] ≔ ta		
➡ Stage	All	Local	"master"	Q Subject, Auth	or, SHA
BRANCHES	Short SHA	Subje	ct	Author	Date
🔑 backup	ττταζος	Q R	emove JDK / from CI testing	led Dunning	January 7, 20
₽µ drej82-master	8bebf85	0 A	dd multi-merge to Log and Float histograms. Add comparison capabilitie	Ted Dunning	January 7, 20
P faster-merge	bc121cc	🔶 El	iminated commons lang dependency, cleaned up some test hygiene	Ted Dunning	January 7, 20
	dbaf748	Ф М	erge branch 'master' of https://github.com/tdunning/t-digest	Ted Dunning	December 18
F ISSUE-04	cdc196c	Ò	Fixed link to folly, closes #120	Ted Dunning	December 18
Jpountz-AbstractTDiges	779ab7b	0	Minor fixes after review by Otmar	Ted Dunning	December 18
🥲 🖓 master 🛛 🕑	f1953f1	0 м	oved Q-digest comparison to quality directory.	Ted Dunning	December 16
₽° new-article	804e4a0	0 U	pdated README with news	Ted Dunning	December 15
DEMOTEO	f52e1bf	ФМ	erge branch 'master' of https://github.com/tdunning/t-digest	Ted Dunning	December 15
REMOTES	e8ca847	Q	Merge pull request #115 from ryanpbrewster/rpb/sort-bench	Ted Dunning	November 2, 1
origin	da0e380	Ċ	Choose a random pivet	Ryan P. Brewster	September 13
TAGS	9d855d9	C	Add benchmark for Sort on ordered input	Ryan P. Brewster	September 13
	b8e1148	0	Added two level merging to combat centroid smearing	Ted Dunning	December 15
SUBMODULES	72a1d6f	0	Added two level merging to combat centroid smearing	Ted Dunning	December 4, :
OTHER	2ddb8cc	0	Unpacked some utility functions	Ted Dunning	December 3, :
· · · · · ·	1208ae0	¢	Added scale function tests, small fixes. Also updated sizing.tex documen	Ted Dunning	November 1, :
	19fe38b	0	Added single pass test to verify quality of interpolation without incremen	Ted Dunning	October 31, 2

Easy Data Version Control with Snapshots

Snapshots based on MapR volumes

True point-in-time version of data

Less expensive than copying

Fully distributed across cluster

Valohai Uses Snapshots for Their ML Pipeline Service

Eero Laaksonen & Juha Kilii from Finnish company Valohai demonstrate how they do version control using snapshots in this webinar with Ian Downard (MapR):

https://mapr.com/webinars/a-guide-to-version-control-for-machine-learning/

This is What You Track

- For Training Data:
- Pathname of raw data snapshot
- Git reference for data preparation process (feature extraction)

- For Code (Delivered Model):
- The model
- Pathname of training data snapshot
- Git reference for learning script
 - Includes random number seed
 - Includes knob settings for learning process
 - The learning code

Data Unit Testing

Does what you're doing now match what you did before? Test that: build a way to see if there are changes that matter.

- <u>Test outputs</u>: Maybe what changed doesn't matter
- <u>Test inputs</u>: Another good approach (see Google paper)

Data Validation Article from Google Research

DATA VALIDATION FOR MACHINE LEARNING

Eric Breck¹ Neoklis Polyzotis¹ Sudip Roy¹ Steven Euijong Whang² Martin Zinkevich¹

ABSTRACT

Machine learning is a powerful tool for gleaning knowledge from massive amounts of data. While a great deal of machine learning research has focused on improving the accuracy and efficiency of training and inference algorithms, there is less attention in the equally important problem of monitoring the quality of data fed to machine learning. The importance of this problem is hard to dispute: errors in the input data can nullify any benefits on speed and accuracy for training and inference. This argument points to a data-centric approach to machine learning that treats training and serving data as an important production asset, on par with the algorithm and infrastructure used for learning.

https://www.sysml.cc/doc/2019/167.pdf

Free eBooks courtesy of MapR

Please support women in tech – help build girls' dreams of what they can accomplish

#womenintech #datawomen

© Ellen Friedman 2015

Thank you !

Contact Information

Ellen Friedman, PhD

Committer Apache Drill & Apache Mahout projects O'Reilly author

Email <u>ellenf@apache.org</u>

Twitter @Ellen_Friedman

Today: #bbuzz