
Amazon

Apache Lucene™ on
Amazon.com

06.17.2019

Amazon

Who are we?

§ Mike McCandless

- Long-time Lucene committer, author Lucene in Action
2nd edition

§ Mike Sokolov

- Search Veteran, new Lucene/Solr committer

§ Contributions from many teammates @Amazon in Boston,
Palo Alto, San Francisco, Dublin, Tokyo, Seattle

2

Amazon 3

• Overview
• Service architecture
• Performance measurement
• Analysis challenges
• Query optimizations
• Multiphase ranking
• Summary

Outline

Amazon

Using Lucene for shopping on Amazon

Amazon has strong search requirements:

§ High and peaky query rate
§ Low latency bound
§ Large, volatile catalog

Can Lucene handle these requirements?

4

Amazon

Why Lucene?

§ Lucene is a modern, mature, feature rich IR engine
§ 20 years old!
§ Apache open-source model, with generous license, works well
§ Widely used inside and outside Amazon
§ Active, passionate community is always innovating (e.g.,

maxscore scoring, Weak AND, Codec impacts in 8.0)
§ Rich text analytics (full Unicode), modern scoring models,

pluggable codecs

5

https://issues.apache.org/jira/browse/LUCENE-4100

Amazon

Lucene design

§ 100% Java
§ On-disk search index with small

in-memory index structures
§ Lucene can search very large indices with little RAM
§ Highly concurrent indexing and searching
§ Memory-mapped IO, rely on OS to cache hot pages
§ Segmented design gives fast updates to a single index
§ Near-real-time, transactional “point in time” search
§ Write-once design allows for good value compression

6

Amazon

Lucene features we are using

§ Near-real-time segment replication
§ Concurrent searching (“thread per segment per query”)
§ Index time joins, static index sort, early termination
§ Dimensional points for range filters and lightning deals
§ Custom Collector, DoubleValuesSource, Query
§ Custom term frequency for behavioral signals
§ Taxonomy facets
§ Multi-phase ranking
§ Expressions

7

Amazon

Open-source at Amazon

8

§ Lucene is a strategic open-source project
§ Developers are encouraged to interact with open-source

community, push changes back, open issues, etc.
§ Recent Lucene improvements:

§ Custom term frequencies
§ Concurrent indexing updates
§ Concurrent faceting
§ FST direct arc addressing
§ Off-heap FSTs

™

Amazon 9

• Overview
• Service architecture
• Performance measurement
• Analysis challenges
• Query optimizations
• Multiphase ranking
• Summary

Outline

Amazon

Near-real-time segment replication

§ Large indexes and low latency → sharded index
§ High query throughput → replicated index
§ Solr, Elasticsearch use document replication
§ Lucene’s segments are a natural replication unit
§ Index and merge each segment once
§ Share segments using durable, highly-connected cloud storage
§ External queue ensures no lost updates, consistency
§ Preserve Lucene’s transactional semantics

10

Amazon

Service architecture

§ Build on AWS infrastructure
§ Indexer, searcher nodes run inside ECS containers
§ Catalog changes arrive via Kinesis queues and DynamoDB
§ gRPC APIs trigger Lucene refresh, new near-real-time

searcher every ~60 seconds
§ Near-real-time index snapshots are saved in S3
§ Index always re-built on each software deployment
§ Service warmed using synthetic queries

11

Amazon 12

Amazon

Searching a segmented index

13

95
19
42
17
3
25
1
2
7

100
100
95
94
47
42
36
36
25

100
19
36
17
3
25
1
2
7

94
19
47
17
3
25
1
2
7

Per-Slice Collection

100
19
36
17
3
25
1
2
7

Merge Sort

Amazon

Searching a segmented index concurrently

§ Index is statically sorted by item “quality”
§ Per-segment early termination
§ Thread per segment per query
§ Better long-pole query latencies, but worse red-line QPS
§ Can we fall back to single threaded near red-line?
§ Can we use multiple threads to search a large segment?

14

Amazon

P99 query latency and segment replication

Amazon 16

• Overview
• Service architecture
• Performance measurement
• Analysis challenges
• Query optimizations
• Multiphase ranking
• Summary

Outline

Amazon

Internal nightly benchmarks

§ Similar to Lucene’s nightly benchmarks
§ Track progress and catch accidental regressions
§ Measure both functionality and performance metrics

17

https://home.apache.org/~mikemccand/lucenebench/

Amazon

Measuring performance

§ Long-pole (P99+) query latency is a key metric
§ Query latencies measured with open-loop client, Poisson

arrival times
§ Avoids “coordinated omission” bug
§ Latency measured under what conditions?

§ Red-line QPS measured with closed-loop client
§ Goal: drive up red-line QPS while holding down latencies

below red-line

18

Amazon

Concurrent refresh

§ Problem: Lucene “borrows” application indexing threads
to provide concurrent refresh

§ If application uses only one thread calling refresh(), that’s
single threaded – common case?

§ On highly concurrent hardware this is very slow
§ Solution: use expert Lucene API to refresh concurrently

(LUCENE-8700)

19

Amazon

Gathering metrics using Lucene’s abstractions

§ Wrap DirectoryReader to count term lookups
§ Wrap Directory, IndexInput to gather IO counters
§ How many bytes does each query visit?
§ How many times does each query lookup terms?
§ Track per-query metrics in nightly benchmarks

20

Amazon

Full garbage collection is bad!

§ We use JDK11’s (deprecated) CMS garbage collector
§ We don’t trust G1GC yet
§ Use Azul’s jHiccup to measure real pauses
§ We hit 8 second stop-the-world full GC pauses

§ Reduced heap usage
§ Increased heap size
§ Changed GC parameters (poached from Elasticsearch)

§ -XX:CMSInitiatingOccupancyFraction=75
§ -XX:+UseCMSInitiatingOccupancyOnly

Amazon

Lucene nightly benchmarks

JDK 11

Restore Parallel GC

Amazon 23

• Overview
• Service architecture
• Performance measurement
• Analysis challenges
• Query optimizations
• Multiphase ranking
• Summary

Outline

Amazon

Context-sensitive analysis

l What does “plane” mean to you?

24

Amazon

Context-sensitive analysis

25

An
Airplane?

Amazon

Context-sensitive analysis

26

A bench
plane?

Amazon

Context-sensitive analysis

§ Synonyms applied only during indexing
§ We have a helpful synonym “plane” “airplane,” but we

probably shouldn’t apply it to tools
§ Lucene switches analysis per field
§ We switch synonyms based on field values like product type,

and other contextual information

27

Amazon

Numbers are special

§ “Toy for 3 year old” should match toys with text “for age 2-4
years”

§ 1500 ml should match 1.5 liters.
§ 1,100 == 1100 == 1.100 != 1/100 or 1:100
§ It’s hard to handle these after StandardTokenizer!

28

Amazon

WordDelimiterGraphFilter

§ Splits on non-letter/number characters
§ Cannot accept a token graph
§ Messes up offsets
§ Many many options

§ Useful with whitespace tokenization

29

Amazon 30

• Overview
• Service architecture
• Performance measurement
• Analysis challenges
• Query optimizations
• Multiphase ranking
• Summary

Outline

Amazon

Indexed queries

§ Many queries share common sets of filters
+asin_or_proffer:asin +is_idq_suppressed:0
+is_campus_custom:0 +adult-product:0

§ Let’s factor them out during indexing (like Percolate)
§ … and searching, replacing with a single TermQuery clause

31

Amazon

Factoring queries

§ Factoring general Boolean expressions is hard!
§ Luckily, our queries are mostly conjunctive
§ FP-growth algorithm works well
§ Simplify by handling one level of nesting

32

Amazon

Results

§ +30% red-line QPS!
§ P99 latency 81ms -> 54ms

33

Amazon

Indexing tuples

§ This is a similar idea, but for full text
§ Index common pairs of words (tuples)

34

casa_iphone: 20535
iphone_plus: 10297
dress_woman: 7956
shoe_woman: 7497
casa_galaxy: 5175
galaxy_samsung: 4912
led_light: 4854
day_valentine: 4840

Amazon

Lightning deals using dimensional points

§ Each lightning deal has a unique
name, and start/end time range

§ Each product can have multiple
deals

§ Very time sensitive – e.g. on
Prime Day 2019

§ Custom 3D shape and query

35

Amazon 36

• Overview
• Service architecture
• Performance measurement
• Analysis challenges
• Query optimizations
• Multiphase ranking
• Summary

Outline

Amazon

Ranking

§ Machine-learned models using custom evaluator
§ Multiple input signals

§ Custom term freqs for behavioral scores
§ Doc values fields for per-document signals

§ Custom scoring functions as DoubleValuesSource
§ Heavy use of Lucene expressions

37

Amazon

Multi-phase ranking

§ Top K0 matching docs ordered by index rank
§ Top K1 of K0 reordered with fast rank
§ Top K of K1 with precise final rank
§ Tunable tradeoff of speed/precision

39

K0 K1 K

Amazon

Phase 0 concurrent collection

§ Conservatively, collect K0 for each segment
§ Guarantees same top K0 as sequential collection
§ How likely is this worst case?
§ For random distribution in p segments:
§ (1/p)^K0; p ~ 20, and K0 ~1000
§ (1/20)^1000 = not going to happen

40

KK

p

Amazon

Proportional collection

§ Expected portion of top n in segment k is n*pk
§ LUCENE-8681
§ Multinomial p.d.f gives probability (number of

combinations) of a given document
distribution

41

Amazon 42

• Overview
• Service architecture
• Performance measurement
• Analysis challenges
• Query optimizations
• Multiphase ranking
• Summary

Outline

Amazon

Summary

§ Lucene works well for Amazon’s product search!
§ Segment replication is efficient for deep clusters
§ Thread per segment concurrency yields low latencies
§ If you enjoy working on Lucene open source, and high scale,

high impact software… come join us!

43

Amazon

Thank you
QUESTIONS?

now … or come find us at our booth!

