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Who are we?

= Mijke McCandless

- Long-time Lucene committer, author Lucene in Action
2nd edition

= Mike Sokolov

- Search Veteran, new Lucene/Solr committer

= Contributions from many teammates @Amazon in Boston,
Palo Alto, San Francisco, Dublin, Tokyo, Seattle
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Overview
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Using Lucene for shopping on Amazon

Amazon has strong search requirements:

= High and peaky query rate
= Low latency bound

= Large, volatile catalog

Can Lucene handle these requirements?
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Why Lucene?

= Lucene is a modern, mature, feature rich IR engine

= 20 years old!

= Apache open-source model, with generous license, works well

= Widely used inside and outside Amazon

= Active, passionate community is always innovating (e.g.,
maxscore scoring, Weak AND, Codec impacts in 8.0)

= Rich text analytics (full Unicode), modern scoring models,
pluggable codecs
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https://issues.apache.org/jira/browse/LUCENE-4100

Lucene design

100% Java

On-disk search index with small
in-memory index structures
Lucene can search very large indices with little RAM
Highly concurrent indexing and searching
Memory-mapped IO, rely on OS to cache hot pages
Segmented design gives fast updates to a single index
Near-real-time, transactional “point in time” search
Write-once design allows for good value compression
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Lucene features we are using

= Near-real-time segment replication

= Concurrent searching (“thread per segment per query”)
= |ndex time joins, static index sort, early termination

= Dimensional points for range filters and lightning deals
= Custom Collector, DoubleValuesSource, Query

= Custom term frequency for behavioral signals

= Taxonomy facets

= Multi-phase ranking

= Expressions
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Open-source at Amazon

= Lucene is a strategic open-source project
= Developers are encouraged to interact with open-source
community, push changes back, open issues, etc.
= Recent Lucene improvements:
= Custom term frequencies
= Concurrent indexing updates
= Concurrent faceting
= FST direct arc addressing
= Off-heap FSTs
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Service architecture
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Near-real-time segment replication

= Large indexes and low latency — sharded index

= High query throughput — replicated index

= Solr, Elasticsearch use document replication

= Lucene's segments are a natural replication unit

= |ndex and merge each segment once

= Share segments using durable, highly-connected cloud storage
= External queue ensures no lost updates, consistency

= Preserve Lucene's transactional semantics
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Service architecture

= Build on AWS infrastructure

= |ndexer, searcher nodes run inside ECS containers

= (Catalog changes arrive via Kinesis queues and DynamoDB

= gRPC APIs trigger Lucene refresh, new near-real-time
searcher every ~60 seconds

= Near-real-time index snapshots are saved in S3

= |ndex always re-built on each software deployment

= Service warmed using synthetic queries

Amazon
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Searching a segmented index

100 Merge Sort
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Per-Slice Collection
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Searching a segmented index concurrently

Index is statically sorted by item “quality”

Per-segment early termination

Thread per segment per query

Better long-pole query latencies, but worse red-line QPS
Can we fall back to single threaded near red-line?

Can we use multiple threads to search a large segment?
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P99 query latency and segment replication
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Performance measurement
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Internal nightly benchmarks

= Similar to Lucene’s nightly benchmarks
= Track progress and catch accidental regressions
= Measure both functionality and performance metrics

Searcher queries/sec (red line)

Amazon


https://home.apache.org/~mikemccand/lucenebench/
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Measuring performance

Long-pole (P99+) query latency is a key metric
Query latencies measured with open-loop client, Poisson
arrival times

= Avoids “coordinated omission” bug

= |atency measured under what conditions?
Red-line QPS measured with closed-loop client
Goal: drive up red-line QPS while holding down latencies
below red-line
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Concurrent refresh

Problem: Lucene “borrows"” application indexing threads
to provide concurrent refresh

If application uses only one thread calling refresh(), that's
single threaded - common case?

On highly concurrent hardware this is very slow

Solution: use expert Lucene API to refresh concurrently
(LUCENE-8700)
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Gathering metrics using Lucene’s abstractions
= Wrap DirectoryReader to count term lookups

= Wrap Directory, IndexInput to gather 10 counters

= How many bytes does each query visit?

= How many times does each query lookup terms?

= Track per-query metrics in nightly benchmarks
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Full garbage collection is bad!

We use JDK11's (deprecated) CMS garbage collector
We don't trust G1GC yet
Use Azul's jHiccup to measure real pauses
We hit 8 second stop-the-world full GC pauses
= Reduced heap usage
= Increased heap size
= Changed GC parameters (poached from Elasticsearch)
= -XX:CMSiInitiatingOccupancyFraction=75
= -XX:+UseCMSiInitiatingOccupancyOnly



Lucene nightly benchmarks
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Analysis challenges
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Context-sensitive analysis

« What does “plane” mean to you?
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Context-sensitive analysis

An
Airplane?
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Context-sensitive analysis

A bench
plane?
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Context-sensitive analysis

= Synonyms applied only during indexing

= We have a helpful synonym “plane”  “airplane,” but we
probably shouldn’t apply it to tools

= Lucene switches analysis per field

= We switch synonyms based on field values like product type,
and other contextual information

Amazon
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Numbers are special

= “Toy for 3 year old” should match toys with text “for age 2-4
years”

= 1500 ml should match 1.5 liters.

= 1,700 ==1100==1.100!=1/100 or 1:100

= |t's hard to handle these after StandardTokenizer!

Amazon
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WordDelimiterGraphFilter

= Splits on non-letter/number characters
= Cannot accept a token graph
= Messes up offsets
= Many many options

=  Useful with whitespace tokenization
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Query optimizations
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Indexed queries

= Many queries share common sets of filters
+asin_or_proffer:asin +is_idq_suppressed:0
+1s_campus_custom:0 +adult-product:0

= Let's factor them out during indexing (like Percolate)
= ... and searching, replacing with a single TermQuery clause
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Factoring queries

Factoring general Boolean expressions is hard!
Luckily, our queries are mostly conjunctive
FP-growth algorithm works well

Simplify by handling one level of nesting
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Results

+30% red-line QPS!
P99 latency 81ms -> 54ms
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Indexing tuples

= This is a similar idea, but for full text
= |ndex common pairs of words (tuples)

casa_iphone: 20535
iphone_plus: 10297
dress_woman: 7956
shoe woman: 7497
casa_galaxy: 5175
galaxy_samsung: 4912
led_light: 4854
day_valentine: 4840
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Lightning deals using dimensional points

= Each lightning deal has a unique
name, and start/end time range

= Each product can have multiple
deals

= Very time sensitive — e.g. on
Prime Day 2019

= Custom 3D shape and query
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Multiphase ranking
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Ranking

= Machine-learned models using custom evaluator
= Multiple input signals

= Custom term freqs for behavioral scores

= Doc values fields for per-document signals
= Custom scoring functions as DoubleValuesSource
= Heavy use of Lucene expressions
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Multi-phase ranking

Top KO matching docs ordered by index rank
Top K1 of KO reordered with fast rank

Top K of K1 with precise final rank

Tunable tradeoff of speed/precision

1.

KO K1 K

Amazon
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Phase O concurrent collection

Conservatively, collect KO for each segment
Guarantees same top KO as sequential collection

How likely is this worst case?

For random distribution in p segments:
(1/p)~KO; p ~ 20, and KO ~1000
(1/20)~1000 = not going to happen

Amazon
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Proportional collection

= Expected portion of top n in segment k is n*p,

= LUCENE-8681

= Multinomial p.d.f gives probability (humber of
combinations) of a given document
distribution

Amazon




Summary
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Summary

= Lucene works well for Amazon'’s product search!

= Segment replication is efficient for deep clusters

= Thread per segment concurrency yields low latencies

= |f you enjoy working on Lucene open source, and high scale,
high impact software... come join us!

Amazon



.S Amazon Search

Thank you

Amazon QUESTIONS?
now ... or come find us at our booth!



