Apache Lucene™ on
Amazon.com

AAAAAA

Who are we?

= Mijke McCandless

- Long-time Lucene committer, author Lucene in Action
2nd edition

= Mike Sokolov

- Search Veteran, new Lucene/Solr committer

= Contributions from many teammates @Amazon in Boston,
Palo Alto, San Francisco, Dublin, Tokyo, Seattle

Amazon

Overview

3 Amazon

Using Lucene for shopping on Amazon

Amazon has strong search requirements:

= High and peaky query rate
= Low latency bound

= Large, volatile catalog

Can Lucene handle these requirements?

Amazon

Why Lucene?

= Lucene is a modern, mature, feature rich IR engine

= 20 years old!

= Apache open-source model, with generous license, works well

= Widely used inside and outside Amazon

= Active, passionate community is always innovating (e.g.,
maxscore scoring, Weak AND, Codec impacts in 8.0)

= Rich text analytics (full Unicode), modern scoring models,
pluggable codecs

Amazon

https://issues.apache.org/jira/browse/LUCENE-4100

Lucene design

100% Java

On-disk search index with small
in-memory index structures
Lucene can search very large indices with little RAM
Highly concurrent indexing and searching
Memory-mapped IO, rely on OS to cache hot pages
Segmented design gives fast updates to a single index
Near-real-time, transactional “point in time” search
Write-once design allows for good value compression

Amazon

62 segs; _zet

nnnnnnn

Lucene features we are using

= Near-real-time segment replication

= Concurrent searching (“thread per segment per query”)
= |ndex time joins, static index sort, early termination

= Dimensional points for range filters and lightning deals
= Custom Collector, DoubleValuesSource, Query

= Custom term frequency for behavioral signals

= Taxonomy facets

= Multi-phase ranking

= Expressions

Amazon

Open-source at Amazon

= Lucene is a strategic open-source project
= Developers are encouraged to interact with open-source
community, push changes back, open issues, etc.
= Recent Lucene improvements:
= Custom term frequencies
= Concurrent indexing updates
= Concurrent faceting
= FST direct arc addressing
= Off-heap FSTs

Amazon

Service architecture

9 Amazon

10

Near-real-time segment replication

= Large indexes and low latency — sharded index

= High query throughput — replicated index

= Solr, Elasticsearch use document replication

= Lucene's segments are a natural replication unit

= |ndex and merge each segment once

= Share segments using durable, highly-connected cloud storage
= External queue ensures no lost updates, consistency

= Preserve Lucene's transactional semantics

Amazon

11

Service architecture

= Build on AWS infrastructure

= |ndexer, searcher nodes run inside ECS containers

= (Catalog changes arrive via Kinesis queues and DynamoDB

= gRPC APIs trigger Lucene refresh, new near-real-time
searcher every ~60 seconds

= Near-real-time index snapshots are saved in S3

= |ndex always re-built on each software deployment

= Service warmed using synthetic queries

Amazon

12

1 request 1 request

Forwarding

Blenders

Collators

Many requests [APS fan-out) 1 request

AMAZON VPC [MAWS)

PUBLIC AWS VPC (A9 Account)

EC2

Collators

S— oo I on
]

S | =X
S =1 3

Am———g————

|

|

|

|

|

|

|

|

|

'

|

'

|

|

°

=)

<1

[t
1 |

-
243
=] o
= ~

°

=)

=]

|

Amazon

Searching a segmented index

100 Merge Sort
100

95
94
47
42
36
36
25

Per-Slice Collection

Amazon

14

Searching a segmented index concurrently

Index is statically sorted by item “quality”

Per-segment early termination

Thread per segment per query

Better long-pole query latencies, but worse red-line QPS
Can we fall back to single threaded near red-line?

Can we use multiple threads to search a large segment?

Amazon

P99 query latency and segment replication

I
Search request latency vs. segment update size
m \\j\ |
£ 1 ©

..tLJLuJ.MWJMJWHa “mm' .,JJ,ALLJ A LU

I

4
n 20 an 20 Jan 20 Jan 20 Jan 20 Jan 21

Y 14:00 : : 20:00 22:00 00:00 : 04:00 06:00 08:00 10:00 12:00
| ||l search_request Time p99.9 || W use-checkpoint download -bytes avg

Amazon

Performance measurement

16 Amazon

17

Internal nightly benchmarks

= Similar to Lucene’s nightly benchmarks
= Track progress and catch accidental regressions
= Measure both functionality and performance metrics

Searcher queries/sec (red line)

Amazon

https://home.apache.org/~mikemccand/lucenebench/

18

Measuring performance

Long-pole (P99+) query latency is a key metric
Query latencies measured with open-loop client, Poisson
arrival times

= Avoids “coordinated omission” bug

= |atency measured under what conditions?
Red-line QPS measured with closed-loop client
Goal: drive up red-line QPS while holding down latencies
below red-line

Amazon

19

Concurrent refresh

Problem: Lucene “borrows"” application indexing threads
to provide concurrent refresh

If application uses only one thread calling refresh(), that's
single threaded - common case?

On highly concurrent hardware this is very slow

Solution: use expert Lucene API to refresh concurrently
(LUCENE-8700)

Amazon

Gathering metrics using Lucene’s abstractions
= Wrap DirectoryReader to count term lookups

= Wrap Directory, IndexInput to gather 10 counters

= How many bytes does each query visit?

= How many times does each query lookup terms?

= Track per-query metrics in nightly benchmarks

Amazon

Full garbage collection is bad!

We use JDK11's (deprecated) CMS garbage collector
We don't trust G1GC yet
Use Azul's jHiccup to measure real pauses
We hit 8 second stop-the-world full GC pauses
= Reduced heap usage
= Increased heap size
= Changed GC parameters (poached from Elasticsearch)
= -XX:CMSiInitiatingOccupancyFraction=75
= -XX:+UseCMSiInitiatingOccupancyOnly

Lucene nightly benchmarks

) ') PhraseQuery (sloppy)
2019/03/04 22:17:03:
2.8 PS: 2.6
Restore Parallel GC
2.7

2.65
i

Queries/sec
N N
:b N U1 N
(6,1 w [9,] (o)}

N
EN

2.35

DK —

2.25

2.2

17 Feb 24 Feb 03 Mar 10 Mar 17 Mar 24 Mar 31 Mar 07 Apr 14 Apr 21 Apr 28 Apr 05 May 12 May
Date

Analysis challenges

23 Amazon

24

Context-sensitive analysis

« What does “plane” mean to you?

Amazon

25

Context-sensitive analysis

An
Airplane?

Amazon

26

Context-sensitive analysis

A bench
plane?

Amazon

27

Context-sensitive analysis

= Synonyms applied only during indexing

= We have a helpful synonym “plane” “airplane,” but we
probably shouldn’t apply it to tools

= Lucene switches analysis per field

= We switch synonyms based on field values like product type,
and other contextual information

Amazon

28

Numbers are special

= “Toy for 3 year old” should match toys with text “for age 2-4
years”

= 1500 ml should match 1.5 liters.

= 1,700 ==1100==1.100!=1/100 or 1:100

= |t's hard to handle these after StandardTokenizer!

Amazon

29

WordDelimiterGraphFilter

= Splits on non-letter/number characters
= Cannot accept a token graph
= Messes up offsets
= Many many options

= Useful with whitespace tokenization

Amazon

Query optimizations

30 Amazon

31

Indexed queries

= Many queries share common sets of filters
+asin_or_proffer:asin +is_idq_suppressed:0
+1s_campus_custom:0 +adult-product:0

= Let's factor them out during indexing (like Percolate)
= ... and searching, replacing with a single TermQuery clause

Amazon

32

Factoring queries

Factoring general Boolean expressions is hard!
Luckily, our queries are mostly conjunctive
FP-growth algorithm works well

Simplify by handling one level of nesting

Amazon

33

Results

+30% red-line QPS!
P99 latency 81ms -> 54ms

Amazon

D18

Mar 2018

Apr 2018

May 2018

34

Indexing tuples

= This is a similar idea, but for full text
= |ndex common pairs of words (tuples)

casa_iphone: 20535
iphone_plus: 10297
dress_woman: 7956
shoe woman: 7497
casa_galaxy: 5175
galaxy_samsung: 4912
led_light: 4854
day_valentine: 4840

Amazon

35

Lightning deals using dimensional points

= Each lightning deal has a unique
name, and start/end time range

= Each product can have multiple
deals

= Very time sensitive — e.g. on
Prime Day 2019

= Custom 3D shape and query

Amazon

Multiphase ranking

36 Amazon

Ranking

= Machine-learned models using custom evaluator
= Multiple input signals

= Custom term freqs for behavioral scores

= Doc values fields for per-document signals
= Custom scoring functions as DoubleValuesSource
= Heavy use of Lucene expressions

39

Multi-phase ranking

Top KO matching docs ordered by index rank
Top K1 of KO reordered with fast rank

Top K of K1 with precise final rank

Tunable tradeoff of speed/precision

1.

KO K1 K

Amazon

40

Phase O concurrent collection

Conservatively, collect KO for each segment
Guarantees same top KO as sequential collection

How likely is this worst case?

For random distribution in p segments:
(1/p)~KO; p ~ 20, and KO ~1000
(1/20)~1000 = not going to happen

Amazon

41

Proportional collection

= Expected portion of top n in segment k is n*p,

= LUCENE-8681

= Multinomial p.d.f gives probability (humber of
combinations) of a given document
distribution

Amazon

Summary

42 Amazon

43

Summary

= Lucene works well for Amazon'’s product search!

= Segment replication is efficient for deep clusters

= Thread per segment concurrency yields low latencies

= |f you enjoy working on Lucene open source, and high scale,
high impact software... come join us!

Amazon

.S Amazon Search

Thank you

Amazon QUESTIONS?
now ... or come find us at our booth!

