
Scaling ONNX, TensorFlow
and XGBoost model
evaluation in search

Lester Solbakken | June 17th 2019

vespa.ai

ML models in classification, transformation, ++

Query
handler

Model
servers

Models

ML models in search, personalization, ads ++

Query
handler

Content
servers

Other services

Query
handler

Model
servers

Models

ML models in search, personalization, ads ++

Content
servers

Other services

Bottleneck becomes network capacity:

10Gb network
1000 results/query, 500 floats/result

~ 300 QPS

Query
handler

Models

ML models in search, personalization, ads ++

Content
servers

Other services

Vespa

 Vespa at

Select comments
using neural nets and
reinforcement learning

Personalized article
recommendations

Personalized
real-time native ads

selection

Searching
20+ billion images

Hundreds of Vespa
applications

● serving over a billion
users,

● hundreds of
thousands of
queries per second,

● billions of content
items.

Vespa - core features

● Search and filter over
structured and
unstructured data

● Query time organization
and aggregation of
matching data

● Real-time writes

● Advanced relevance
scoring

● Scaleable and fast
● Elastic and fault tolerant
● Pluggable
● Easy to operate

Performance at scale

Low latency computation over
large data sets

… by parallelization over nodes
and cores

... pushing execution to the data

... and preparing data structures
in real time at write time

Query handler

Search middleware

Content partition

Matching+1st ranking

Grouping & aggregation

2nd phase ranking

Content fetch + snippeting

TensorFlow, ONNX and XGBoost integration

1. Save models directly to
<application package>/models/

2. Reference model outputs in ranking expressions:
search music {
 rank-profile song inherits default {
 first-phase {
 expression {
 0.7 * nativeRank(artist,album,track) +
 0.1 * tensorflow(tf-model-dir) +
 0.1 * onnx(onnx-model-file, output) +
 0.1 * xgboost(xgboost-model-file)
 }
 }
 }
}

Converting computational graphs to Vespa
map(
 join(
 reduce(
 join(
 placeholder,
 weights,
 f(x,y)(x * y)
),
 sum,
 d1
),
 bias,
 f(x,y)(x + y)
),
 f(x)(max(0,x))
)placeholder weights

matmul bias

add

relu

Benchmark - recommendation system

Query
handler

1st phase
ranking

2nd phase
model

evaluation

TensorFlow

Content

Baseline

Baseline w/ data

Model evaluation on Vespa

TensorFlow serving evaluation

3 layer neural network: (128+128) x 512 x 128 x 1
~ 200 K parameters

Scaling up model inference performance

http://blog.vespa.ai/post/173669458506/scaling-tensorflow-model-evaluation-with-vespa

http://blog.vespa.ai/post/173669458506/scaling-tensorflow-model-evaluation-with-vespa

Increasing number of evaluated results

SLA
Latency: 100ms @ 95%

Utilizing increased resources to
potentially increase quality of
returned results.

To conclude

● External model servers don’t scale well for ML in search

● Use additional content nodes for decreasing latency, increasing

throughput and/or increasing results reranked

● Multi-phase ranking - you might be doing it wrong

● ML model support in Vespa is ongoing work

https://vespa.ai

https://github.com/vespa-engine/vespa

https://vespa.ai
https://github.com/vespa-engine/vespa

Thank you!

vespa.ai

