DATASTAX®

Data Modeling in the New World
with Apache Cassandra™

Jonathan Ellis
CTO, DataStax
Project chair, Apache Cassandra

Download & install DATASTAX'"

Cassandra
. http://planetcassandra.org/cassandra/

©2014 DataStax. Do not distribute without consent. 2

CQL Basics

3 ©2014 DataStax. Do not distribute without consent.

CQL Basics DATASTAX®

Cassandra Query Language

Keyspace — analogous to a schema.
- Has various storage attributes.

- The keyspace determines the RF (replication factor).

Table — looks like a SQL Table.
- A table must have a Primary Key.

- We can fully qualify a table as <keyspace>.<table>

©2014 DataStax. Do not distribute without consent.

DevCenter

DATASTAX

- DataStax DevCenter — a free, visual query tool for creating and running CQL
statements against Cassandra and DataStax Enterprise.

INTO cassandra_mvps cuserid, firstname, lastname, details)

INTO cassandra mvps cuserid, firstname, lastname, details)
1 N (49f64d40-7d89-4890-b910-dbf923563a33,
s2 APPLY BATCH;

update cassandra_mvps SET details . details + {'site’':
where userid - 416aSddc-©0a5-49ed-adde-d99da%a27cO
update cassandra_mvps SET details . details . {'sit
where userid - 49764d40-7d89-4890-b910-dbf923563a3
update cassandra_mvps SET details . details . {'sit
ss where userid - 49f64d40-7d89-4890-b910-dbf923563a33;

'kellabyte.com'y

'perfcap.blogspot.com'y

'devdazed.com'y

Resuhs

S (49764d40-7d89-4890-b910-dbf923563a33, 'Vijay', 'Parthasarathy', ¢'twitter': 'Bvijay

'Russ', 'Bradberry’, {'twitter':

[-XsX¢) DevCenter o
.. Connections 82 T ™ B | M wonkshewcal |[insentcal |5 *sewpecal 5 ® B sowma: cassandra-1.2.10 8 “n8e
¥ cassandra-1.2.10 (Avallie] = ssandra-1.2.10 .
> cassandra-2.0.1 v =
noaes 1nt, ¥ 85 cassandra_community
multi_dc boolean, ¥ [cassandra_users
details list<texts, ¥ F Column Names
PRIMARY KEY (name) E:::n
% "
14 I mul_dc
CREATE TABLE cassandra_mvps ¢ § nodes
userid uuid » E Pastiioning Keys
firstname varchar, > £ Clustering Keys
& Secondary Indexfes)
lastname varchar, ¥ [cassandra_mvps
details map<text, texts, » & Column Names
PRIMARY KEY cuserid) ¥ £ Partuioning Keys
% 1 userd
J/user B Clustering Keys
sers » & Secandary Index(es)
INSERT INTO cassandra_users (name, multi dc, details) » 55 system
5 VALUES ¢'Netflix', true, ¢'http://planetcassandra.org/CompanyDetails/Netflix'y; » 05 system_auth
INSERT INTO cassandra_users (name, details) > 59 system_traces
VALUES ¢'CERN', ('http://planetcassandra.org/blog/post/cassandra-at-cern-large-hadron-collid
INSERT INTO cassandra_users (name, details)
3 VALUES ('MetaBroadcast', ¢'http://www.planetcassandra.org/blog/post/5-minute-c-interview--me
= = == 39~ INSERT INTO cassandra_users (name, details)
[7) cat scrpes B ox 2 B 3 VALUES ('Twitter', ('http://planetcassandra.org/CompanyDetails/Twitter '1);
[0 create_schema.cal 5
1 drop_schema.cql N 7/ Ad ails
iosertcal M Add details
schema_uporade_v1.cal ©9:5-UPDATE cassandra_users SET geteila = + ['http://techblog.netflix.con/201, g-nigh-p ith.htal']
seupcql 3 WHERE name . 'Netflix'; [7 function - blobAsBigintg g -
1B werksheetql 7 Function - date0f) 2= outline 52 B%*0
1w // MVPs = Function - maxTimeuuid)
337 BEGIN BATCH I8 Functon - miTimauiso B e CReATE evseace casandra_community
4 INSERT INTO cassandra_mvps cuser . fencton-noat etails) JSE cassandra_community
s VALUES (416a5ddc-00a5-49ed-adde Z/reon el rton’, ATE TABLE cassandra,uiars
42 {'twitter': '@aaronmorton', = Function - unixTimesampOI0 m'y
43 % ‘B detalls (column) @ INSERT INTO cassandra_usars
44 INSERT INTO cassandra_mvps (USer p muit_deicolumm) etails) ® INSERT INTO cassandra_users
s VALUES (49f64d40-7d89-4890-b910 L name oo ockcroft', {'twitter': '@adriance S ST IO casandrnsvry
4 NSERT INTO cassandra_mvps cuserid, firstname, lastname, details) oy T —
$ 5 (416a5ddc -00a5-49ed-adde-d99da9a27cOc, 'Kelly', 'Sommers', {'twitter': '@kellabyte") @ INSTRT INTO cassandra_rmps.

@ INSERT INTO cassmndra_mmips.

@ INSIRT INTO cassandra_rmips.

® INSLRT INTO cassandra_mmps
T INTO cassandra_mmps

£ cassandra_mvps

£ cassandra_mvps

£ cassandra_mvps

‘devdazed 'y

©2014 DataStax. Do not distribute without consent.

CQLSH DATASTAX®

- Command line interface comes with Cassandra

- Launching on Linux
S cqglsh [options] [host [port]]

- Launching on Windows
python cglsh [options] [host [port]]

- Example
S cglsh
$ cglsh -u student -p cassandra 127.0.0.1 9160

©2014 DataStax. Do not distribute without consent. 6

CQLSH DATASTAX®

johnny@JPM-MacBook-Pro:/apps/dse/4.0/dse-4.0.2/bin$./cqlsh

Connected to Test Cluster at localhost:9160.

[cqlsh 4.1.1 | Cassandra 2.0.6.28 | CQL spec 3.1.1 | Thrift protocol 19.39.0]
Use HELP for help.

cqlsh> HELP

Documented shell commands:

CAPTURE COPY DESCRIBE EXPAND SHOW TRACING
CONSISTENCY DESC EXIT HELP SOURCE

CQL help topics:

ALTER CREATE_TABLE_OPTIONS SELECT
ALTER_ADD CREATE_TABLE_TYPES SELECT_COLUMNFAMILY
ALTER_ALTER CREATE_USER SELECT_EXPR
ALTER_DROP DELETE SELECT_LIMIT
ALTER_RENAME DELETE_COLUMNS SELECT_TABLE
ALTER_USER DELETE_USING SELECT_WHERE
ALTER_WITH DELETE_WHERE TEXT_OUTPUT
APPLY DROP TIMESTAMP_INPUT
ASCII_OUTPUT DROP_COLUMNFAMILY TIMESTAMP_OUTPUT
BEGIN DROP_INDEX TRUNCATE
BLOB_INPUT DROP_KEYSPACE TYPES
BOOLEAN_INPUT DROP_TABLE UPDATE
COMPOUND_PRIMARY_KEYS DROP_USER UPDATE_COUNTERS
CREATE GRANT UPDATE_SET
CREATE_COLUMNFAMILY INSERT UPDATE_USING
CREATE_COLUMNFAMILY_OPTIONS LIST UPDATE_WHERE
CREATE_COLUMNFAMILY_TYPES LIST_PERMISSIONS USE

CREATE_INDEX LIST_USERS UUID_INPUT
CREATE_KEYSPACE PERMISSIONS

CREATE_TABLE REVOKE

cqlsh>

Non-CQL commands in cqlsh DATASTAX.

Command ___|Description

CAPTURE Captures command output and appends it to a file
CONSISTENCY Shows the current consistency level, or given a level, sets it
COPY Imports and exports CSV (comma-separated values) data
DESCRIBE Provides information about a Cassandra cluster or data objects
EXIT Terminates cqlsh

SHOW Shows the Cassandra version, host, or data type assumptions
SOURCE Executes a file containing CQL statements

TRACING Enables or disables request tracing

©2014 DataStax. Do not distribute without consent. 8

What is keyspace or schema? DATASTAX®

Keyspace or schema is a top-level namespace

All data objects (e.g., tables) must belong to some
keyspace

Defines how data is replicated on nodes
Keyspace per application is a good idea

Replica placement strategy
SimpleStrategy (prototyping)
NetworkTopologyStrategy (production)

©2014 DataStax. Do not distribute without consent.

Creating a keyspace DATASTAX®
Single Data Centre Consistency

Client

Read/Write
Operation

Number of nodes that
must acknowledge is

* tuned by setting the
CONSISTENCY_LEVEL

on any given operation

CREATE KEYSPACE pchstats
WITH REPLICATION =

{'c1ass':'Simp]eStra2f§y',

'replication_factor'

Creating a keyspace DATASTAX®
Multiple Data Centre Consistency

Client CREATE KEYSPACE pchstats
WITH REPLICATION =
sd' "tx'

G,

Read/Write
Operation

{'class':"'NetworkTopologyStrategy',

|
Use and Drop a keyspace DATASTAX®

To work with data objects (e.g., tables) in a keyspace:

USE pchstats;

To delete a keyspace and all internal data objects

DROP KEYSPACE pchstats;

©2014 DataStax. Do not distribute without consent. 12

CQL Basics — creating a table DATASTAX®

CREATE TABLE cities (
city name varchar,
elevation int,
population int,
latitude float,
longitude float,
PRIMARY KEY (city_ name)

) ;

In this example, the partition key = primary key

©2014 DataStax. Do not distribute without consent. 13

Compound Primary Key DATASTAX®

The Primary Key
The key uniquely identifies a row.

A compound primary key consists of:
A partition key
One or more

€.(. PRIMARY KEY (partition key, , eel)

The partition key determines on which node the
partition resides

Data is ordered In order within the
partition

©2014 DataStax. Do not distribute without consent. 14

Compound Primary Key DATASTAX.:

CREATE TABLE sporty league (
team name varchar,
player name varchar,
jersey int,

PRIMARY KEY (team_ name, player name)

©2014 DataStax. Do not distribute without consent. 15

DFITFISTF'IX'

team_name player_name jersey

Springers Adler

Springers Belanger 13
/ Springers Foote

are not

ordered \ _E

Rows within partition clustered
by player _name

©2014 DataStax. Do not distribute without consent. 16

Simple Select DATASTAX.:

SELECT * FROM sporty league;

Peppers

Peppers

Peppers Cabrera
Springers Adler

Springers Bélanger

Springers | Foote |
Mighty Mutts Buddy
Mighty Mutts Lucky

- More that a few rows can be slow.
- Use LIMIT keyword to choose fewer or more rows

Simple Select on DATASTAX.:
and

SELECT * FROM sporty league
WHERE = ‘Mighty Mutts’;

Mighty Mutts |
Mighty Mutts |

SELECT * FROM sporty league

WHERE team name = ‘Mighty Mutts’
and = ‘Lucky’;

ORDER BY DATASTAX®

- Only allowed for single-partition queries
- Only allowed against clustering columns

- Data will returned by default in the order of the
clustering column

- ASC or DESC can override the default

SELECT * FROM sporty league
WHERE team name = ‘Mighty Mutts’
ORDER BY player name DESC;

CLUSTERING ORDER BY clause oaTasTax®

Defines on-disk ordering of rows in a partition

CREATE TABLE albums by genre (

genre VARCHAR,

performer VARCHAR,

year INT,

title VARCHAR,

PRIMARY KEY (genre, performer, year, title)
) WITH CLUSTERING ORDER BY

(performer ASC, year DESC, title ASC);

©2014 DataStax. Do not distribute without consent. 20

Predicates DATASTAX'"

- On the partition key: =and IN
- On the cluster columns: <, <=, = >= > IN

©2014 DataStax. Do not distribute without consent. 21

Insert/Update DATASTAX.:

INSERT INTO sporty league (team name, player name, jersey)
VALUES ('Mighty Mutts', 'Felix’,90);

UPDATE sporty league SET jersey = 77
WHERE team name = 'Mighty Mutts’ AND player name = ‘Felix’;

Primary key columns uniquely identify the row and are mandatory
- No multi-row update predicates

Writes isolated from reads
- No updated columns are visible until entire row is finished

(technically, entire partition)

What is an upsert? DATASTAX®
UPdate + inSERT

Both UPDATE and INSERT are write operations
No reading before writing

Term “upsert” denotes the following behavior

INSERT updates or overwrites an existing row

When inserting a row in a table that already has another row
with the same values in primary key columns

UPDATE inserts a new row

When a to-be-updated row, identified by values in primary key
columns, does not exist

Upserts are legal and do not result in error or warning
messages

©2014 DataStax. Do not distribute without consent. 23

]
How to avoid UPSERTS DATASTAX®

Guarantee that your primary keys are unique from one
another
- Use an appropriate natural key based on your data

- Use a surrogate key for partition key

Use lightweight transactions
INSERT ... IF NOT EXISTS

©2014 DataStax. Do not distribute without consent. 24

Surrogate keys in Cassandra DATASTAX®

RDBMS typically use sequences
- MS SQL IDENTITY, MYSQL AUTO_INCREMENT

« INSERT INTO user (id, firstName, LastName)
VALUES (seqg.nextVal(), ‘Ted’, ‘Codd’)

Cassandra has no sequences!
- Requires a lock (performance killer)

- Requires coordination (availability killer)

What to do?
- Use part of the data to create a unique key

. Use a UUID

©2014 DataStax. Do not distribute without consent. 25

UUID DATASTAX®

Universal Unique ID
128 bits
99051fe9-6a9c-46¢c2-b949-38ef78858dd0
Easily generated on the client
Version 1 has a timestamp component (TIMEUUID)

Version 4 has no timestamp component
Faster to generate

©2014 DataStax. Do not distribute without consent. 26

]
TIMEUUID DATASTAX®

TIMEUUID data type supports Version 1 UUIDs

Generated using time (60 bits), a clock sequence
number (14 bits), and MAC™* address (48 bits)

CQL function ‘now()’ generates a new TIMEUUID

1be43390-9fe4-11e3-8d05-425861b86ab6

Time can be extracted from TIMEUUID

CQL function dateOf() extracts the timestamp as a
date

TIMEUUID values in clustering columns or in column
names are ordered based on time
DESC order on TIMEUUID lists most recent data first

©2014 DataStax. Do not distribute without consent. 27

UUID Example DATASTAX®

Example
- Users are identified by UUID

- User activities (i.e., rating a track) are identified by TIMEUUID

A user may rate the same track multiple times
Activities are ordered by the time component of TIMEUUID

CREATE TABLE track ratings by user (
user UUID,
activity TIMEUUID,
rating INT,
album title VARCHAR,
album year INT,
track title VARCHAR,
PRIMARY KEY (user, activity)
) WITH CLUSTERING ORDER BY (activity DESC);

©2014 DataStax. Do not distribute without consent. 28

Exercise 1

Creating a keyspace and table

29 ©2014 DataStax. Do not distribute without consent.

Exercise 1

Install Cassandra
CREATE KEYSPACE demo
CREATE TABLE users

id

emaill

Password

- CREATE TABLE tweets
- author

created at
body
id?

cqlsh tab completion is your friend!

DATASTAX®

©2014 DataStax. Do not distribute without consent.

30

Exercise 1 DATASTAX®

Who used a uuid for the primary key?

Benefits? Drawbacks?

©2014 DataStax. Do not distribute without consent. 31

Performance considerations DATASTAX®

The best queries are in a single partition.
l.e. WHERE partition key = <something>

Each new partition requires a new disk seek.
Queries that span multiple partitions are s-l-o-w
Queries that span multiple clustered rows are fast

©2014 DataStax. Do not distribute without consent. 32

ALTER TABLE DATASTAX®

ALTER TABLE x ADD y <type>;
ALTER TABLE x DROP vy;

©2014 DataStax. Do not distribute without consent. 33

]
Authentication and Authorisation DATASTAX®

CQL supports creating users and granting them
access to tables etc..

You need to enable authentication in the
cassandra.yaml config file.

You can create, alter, drop and list users

You can then GRANT permissions to users
accordingly — ALTER, AUTHORIZE, DROP, MODIFY,
SELECT.

©2014 DataStax. Do not distribute without consent. 34

Query Tracing DATASTAX.:

- You can turn on tracing on or off for queries with the
TRACING ON | OFF command.

- This can help you understand what Cassandra is
doing and identify any performance problems.

duct_id, product_name, order_timestamp FROM order_by_: or WHERE vendor='Yo

Grill Franchising | 0235 | U1949 | Sobe - Cranberry Grapefruit |

execute_cql3 query
Parsing SELECT vendor, order_id, user_id, quantity, total cost, product_id, product name, order_timestamp FROM order_by vendor YHERE vendor='¥ooDoo BBQ & Grill Franchising® AND bucket = 1 LIMIT 18868;
Preparing statement

Executing single-partition query on order by vendor

Acquiring sstable references

Merging memtable tombstones

Merging data from memtables and B8 sstables

Read 1 live and 8 tombstoned cells

Request plete

What CQL data types are available?oaTasTAX®

CQL Type Constants Description

ASCII strings US-ASCII character string

BIGINT integers 64-bit signed long

BLOB blobs Arbitrary bytes (no validation), expressed as hexadecimal
BOOLEAN booleans true or false

COUNTER integers Distributed counter value (64-bit long)

DECIMAL integers, floats Variable-precision decimal

DOUBLE integers 64-bit IEEE-754 floating point

FLOAT integers, floats 32-bit IEEE-754 floating point

INET strings IP address string in IPv4 or IPv6 format™

INT integers 32-bit signed integer

LIST n/a A collection of one or more ordered elements

MAP n/a A JSON-style array of literals: { literal : literal, literal : literal ...}
SET n/a A collection of one or more elements

TEXT strings UTF-8 encoded string

TIMESTAMP integers, strings Date plus time, encoded as 8 bytes since epoch

UuID uuids A UUID in standard UUID format

TIMEUUID uuids Type | UUID only (CQL 3)

VARCHAR strings UTF-8 encoded string

VARINT integers Arbitrary-precision integer

Collection Data Type DATASTAX.:

CQL supports having columns that contain collections of data.
The collection types include:

- Set, List and Map CREATE TABLE collections_example (
id int PRIMARY KEY,
set example set<text>,
list example list<text>,
map example map<int, text>

)7

These data types are intended to support the type of 1-to-many relationships that can
be modeled in a relational DB e.g. a user has many email addresses.

Some performance considerations around collections.
Requires serialization so don’t go crazy!

- Often more efficient to denormalise further rather than use collections if intending to
store lots of data.

Favour sets over list — lists not as performant

Watch out for collection indexing in Cassandra 2.1!

]
Collection considerations DATASTAX®

- Designed to store a small amount of data
A collection is retrieved In its entirety

Maximum number of elements in a collection is 64
thousands

In practice — hundreds
- Maximum size of element values is 64 KB

Collection columns cannot be part of a primary key
No collections in a partition key

No collections in clustering columns

. Cannot nest a collection inside of another collection

©2014 DataStax. Do not distribute without consent. 38

Counters DATASTAX®

- Stores a number that incrementally counts the occurrences of
a particular event or process.

- Note: If a table has a counter column, all non-counter
columns must be part of a primary key

CREATE TABLE UserActions (
user VARCHAR,
action VARCHAR,
total COUNTER,
PRIMARY KEY (user, action)

) ;

UPDATE UserActions SET total = total + 2
WHERE user = 123 AND action = ’'xyz';

©2014 DataStax. Do not distribute without consent. 39

Counter Considerations DATASTAX®

Performance considerations
Read is as efficient as for non-counter columns

Update is fast but slightly slower than an update for non-counter
columns

Aread is required before a write can be performed

Accuracy considerations

If a counter update is timed out, a client application cannot simply

retry a “failed” counter update as the timed-out update may have
been persisted

Counter update is not an idempotent operation

©2014 DataStax. Do not distribute without consent. 40

Static columns DATASTAX'"

CREATE TABLE bills (
user text,
balance int static,
expense 1d 1int,
amount int,
description text,
palid boolean,
PRIMARY KEY (user, expense id)

©2014 DataStax. Do not distribute without consent. 41

Lightweight Transactions (LWT) DATASTAX®

Why?

. Solve a class of race conditions in Cassandra that you would otherwise need to install
an external locking manager to solve.

Syntax:

INSERT INTO customer account (customerID, customer email)

VALUES (‘Johnny’, ‘jmiller@datastax.com’)
IF NOT EXISTS;

UPDATE customer account

SET customer email=’'jmiller@datastax.com’

IF customer_email=’'jmiller@datastax.com’;

Example Use Case:

Registering a user Not Will Ferrell @itsWillyFerrell - Apr 5

In about 20 years, the hardest thing our kids will have to do is
find a username that isn't taken.

©2014 DataStax. Do not distribute without consent. @DataStaxEU 42

Lightweight Transactions DATASTAX®

Uses Paxos algorthim

All operations are quorum-based i.e. we can loose nodes and its still going
to work!

See Paxos Made Simple - http://bit.ly/paxosmadesimple

Consequences of Lightweight Transactions
4 round trips vs. 1 for normal updates
Operations are done on a per-partition basis

Will be going across data centres to obtain consensus (unless you use
LOCAL_SERIAL consistency)

Cassandra user will need read and write access i.e. you get back the row!

Great for 1% your app, but eventual consistency is still your friend!

Find out more:

« http://www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0
« Eventual Consistency != Hopeful Consistency
http://www.youtube.com/watch?v=A6qzx_HE3EU

©2014 DataStax. Do not distribute without consent. @DataStaxEU 43

Batch Statements DATASTAX"®

BEGIN BATCH
INSERT INTO users (userID, password, name) VALUES ('user2', 'ch@ngem3b', 'second user')

UPDATE users SET password = 'ps22dhds' WHERE userID = 'user2'
INSERT INTO users (userID, password) VALUES ('user3', 'ch@ngem3c')
DELETE name FROM users WHERE userID = 'user2’

APPLY BATCH;

- BATCH statement combines multiple INSERT, UPDATE, and DELETE
statements into a single logical operation

- Saves on client-server and coordinator-replica communication

- Atomic operation
If any statement in the batch succeeds, all will

- No batch isolation

Other “transactions” can read and write data being affected by a partially
executed batch

No semicolon after BEGIN BATCH! Fixed in 2.0.9

©2014 DataStax. Do not distribute without consent. 44

Batch Statements DATASTAX®

BEGIN UNLOGGED BATCH
- Does not write to the batchlog

- More performant, but no longer atomic

BEGIN COUNTER BATCH
- Only for counter mutations

Batch Statements DATASTAX"®

All conditions are applied to all changes to that partition

CREATE TABLE log (
log name text,
seq int static,
logged at timeuuid,
entry text,
primary key (log name, logged at)

)

INSERT INTO log (log name, seq)
VALUES ('foo', 0);

Atomic log appends DATASTAX®

BEGIN BATCH
UPDATE log SET seq = 1
WHERE log name = 'foo'

IF seq = 0;

INSERT INTO log (log name, logged at, entry)
VALUES ('foo', now(), 'test');

APPLY BATCH;

Secondary Indexes DATASTAX®

This gives you fast access to data

If we want to do a query on a column that is not part of your PK,
you can create an index:

CREATE INDEX ON <table>(<column>);

Can be created on any column except counter, static and
collection columns

Than you can do a select:
SELECT * FROM product WHERE type= 'PC';

Avoid doing this for high volume queries!
Scatter/gather required

Much more efficient to model your data around the query
i.e. roll your own indexes!!

When do you want to use a secondary patasTAx®
index?
Secondary indexes are for searching convenience
Use with low-cardinality columns

Columns that may contain a relatively small set of distinct values

Use when prototyping, ad-hoc querying or with smaller datasets

Do not use
On high-cardinality columns

In tables that use a counter column
On a frequently updated or deleted column

To look for a row in a large partition

unless narrowly queried a search on both a partition key and an indexed
column

©2014 DataStax. Do not distribute without consent. 49

Keyword index example DATASTAXS:

Video table defined as: Now we can define an index for tagging
videos

CREATE TABLE videos (
))) CREATE TABLE video tag index (
videoid uuid, - -
_ tag varchar,
videoname varchar,
videoid uuid,
username varchar,))
timestamp timestamp

PRIMARY KEY(tag, videoid)
)

description varchar,
tags varchar,
upload date timestamp,

PRIMARY KEY(videoid)

Partial word index example DATASTAX®

Table:

CREATE TABLE email index (
domain varchar,
user varchar,
username varchar,
PRIMARY KEY (domain, user)

User: jmiller, Email: jmiller@datastax.com

INSERT INTO email index (domain, user, username)

VALUES (‘’@datastax.com’, ‘jmiller’, ‘jmiller’)

©2014 DataStax. Do not distribute without consent. 51

Bitmap(ish) Index Example DATASTAX®

Multiple parts to a key
Create a truth table of the various combinations
However, inserts == the number of combinations

©2014 DataStax. Do not distribute without consent. 52

Bitmap(ish) Index Example

DFITFISTFIX‘

Find a car in a car park by variable combinations

S T

Color

Model

Model+Color

Make

Make+Color
Make+Model
Make+Model+Color

©2014 DataStax. Do not distribute without consent.

53

Bitmap(ish) index example DATASTAX®

Make a table with three different key combinations

CREATE TABLE car location index (

make varchar,

model varchar,

colour varchar,

vehicle id int,

lot id int,

PRIMARY KEY ((make, mode, colour), vehicle id)
)i

©2014 DataStax. Do not distribute without consent. 54

Bitmap(ish) Index Example

DFITFISTFIX‘

We are pre-optimizing for 7 possible queries of the index on insert.

1. INSERT INTO car location index (make, model, colour,
vehicle id, lot id)
VALUES (* Ford’ ‘Mustang’, ‘Blue’, 1234, 8675309);

2. INSERT INTO car location index (make, model, colour,
vehicle id, lot id)
VALUES (Ford’ ‘Mustang’, ‘', 1234, 8675309);

3. INSERT INTO car location index (make, model, colour,
vehicle id, lot id)
VALUES (* Ford’ ‘v, ‘Blue’, 1234, 8675309);

4. INSERT INTO car location index (make, model, colour,
vehicle id, lot id)
VALUES (* Ford’ tr, 41, 1234, 8675309);

5. INSERT INTO car location index (make, model, colour,
vehicle id, lot id)
VALUES (‘’, ‘Mustang’, ‘Blue’, 1234, 8675309);

6. INSERT INTO car location index (make, model, colour,
vehicle id, lot id)
VALUES (‘’, ‘Mustang’, ‘’, 1234, 8675309);

7. INSERT INTO car location index (make, model, colour,

vehicle id,
VALUES (‘’,

lot id)

‘', ‘Blue’, 1234, 8675309);

©2014 DataStax. Do not distribute without consent.

(Batched) DATASTAX®

BEGIN BATCH
INSERT INTO CARS (..) VALUES (..);

INSERT INTO car location index (...)
VALUES (..);

4

INSERT INTO car location index (...)
VALUES (..);

4

APPLY BATCH;

©2014 DataStax. Do not distribute without consent. 56

.
Different Queries are now possible! oaTAsTAX®

SELECT vehical id,lot_id vehical id | lot_id
FROM car location_index > - e - e e e e R
WHERE make = 'Ford' 1234 | 8675309

AND model = "'
AND color = 'Blue’;

SELECT vehical id,lot_id vehical_id | lot_id
FROM car_ location_index e ————
> 1234 | 8675309

WHERE make = ''
AND model = '' 8765 | 5551212

AND color = 'Blue’;

©2014 DataStax. Do not distribute without consent. 57

]
Don’t fear the writes DATASTAX®

3 column index = 7 index rows per entry
4 columns = 15
5 columns = 31
6 columns = 63

©2014 DataStax. Do not distribute without consent. 58

DSE solr indexes DATASTAX'"

Write to Cassandra through Solr

Write index to Solr

® == .

Solr cache RAM
+ Disk
0X..
E
.Sglr
Commit log index
_ SSTable)
Cassandra
keyspace

©2014 DataStax. Do not distribute without consent. 59

What is data modeling? DATASTAX®

- Data modeling is a process that involves

Collection and analysis of data requirements in an
information system

|dentification of participating entities and relationships
among them

|dentification of data access patterns
A particular way of organizing and structuring data
Design and specification of a database schema

Schema optimization and data indexing techniques

- Data modeling = Science + Art

©2014 DataStax. Do not distribute without consent. 60

Key steps of data modeling for DATASTAX®
Cassandra

Understand data and application queries

Data may or may not exist in some format (RDBMS, XML,
Csy, ...)

Design tables
Design is based on access patterns or queries over data

Implement the design using CQL

Optimizations concerning data types, keys, partition sizes,
ordering

©2014 DataStax. Do not distribute without consent. 61

Cassandra modeling vs relational

Cassandra

Precompute queries at write time

- Optimizing for writes means we get
optimized reads for free

All data required to answer a query
must be nested in a table

- Referential integrity is a non-issue

Data modeling methodology is driven
by queries and data

- Data duplication is considered normal
(side effect of data nesting)

DATASTAX

Relational

Recompute queries when read
- Expensive JOIN and ORDER BY

Data from many relations is
combined to answer a query

- Referential integrity is important

Data modeling is driven by data only

- Data duplication is considered a

problem (normalization theory)

©2014 DataStax. Do not distribute without consent.

62

Exercise 2

Twissandra

63 ©2014 DataStax. Do not distribute without consent.

Exercise 2 DATASTAX®

.- Users follow other users
- Users read the tweets of the users they follow
- [OPTIONAL] add tags to tweets table

CREATE TABLE friends (

follower text references users (username),

followed text references users (username)

) ;

SELECT * FROM tweets

WHERE author IN
(SELECT followed FROM friends
WHERE follower = ?);

©2014 DataStax. Do not distribute without consent. 64

Time Series/Sensor Data

65 ©2014 DataStax. Do not distribute without consent.

]
What is time series data? DATASTAX®

Sensors

CPU, Network Card, Electronic Power Meter, Resource
Utilization, Weather

Clickstream data

Historical trends

Stock Ticker

Anything that varies on a temporal basis
Ten Most Popular Videos

Top

©2014 DataStax. Do not distribute without consent. 66

Table Definition DATASTAX®

- Data partitioned by source ID and time
- Timestamp goes in the clustered column

- Store the measurement as the non-clustered column(s)

CREATE TABLE temperature (
weatherstation id text,
event time timestamp,
temperature text

PRIMARY KEY (weatherstation id, event time)
) 7

©2014 DataStax. Do not distribute without consent. 67

Insert and Query Data DATASTAX®

Simple to insert:

INSERT INTO temperature (weatherstation id, event time, temperature)

VALUES (‘1234abcd’, ‘2013-12-11 07:01:00", ‘72F'");

Simple to query

SELECT temperature from temperature WHERE weatherstation id=‘1234abcd’
AND event time > ‘2013-04-03 07:01:00’' AND event time < “2013-04-03
07:04:00"

©2014 DataStax. Do not distribute without consent. 68

Time Series Partitioning DATASTAX®

With the previous table, you can end up with a very large row on 1
partition i.e. PRIMARY KEY (weatherstation id, event time)

This would have to fit on 1 node.
Cassandra can store 2 billion columns per storage row.

The solution is to have a composite partition key to split things up:
CREATE TABLE temperature (

weatherstation id text,

date text,

event time timestamp,

temperature text

PRIMARY KEY ((weatherstation id, date),event time)

©2014 DataStax. Do not distribute without consent. 69

Reverse Ordering DATASTAX.:

CREATE TABLE temperature (
weatherstation id text,
date text,
event time timestamp,
temperature text

PRIMARY KEY ((weatherstation id, date),
event time)

) WITH CLUSTERING ORDER BY (event time DESC);

As part of the table definition, WITH CLUSTERING ORDER BY
(event time DESC), is used to order the data by the most
recent first i.e. the data will be returned in this order.

©2014 DataStax. Do not distribute without consent. 70

Rolling Storage DATASTAXS:

Common pattern for time series data is rolling storage.

For example, we only want to show the last 10 temperature
readings and older data is no longer needed

On most DBs you would need some background job to purge
the old data.

With Cassandra you can set a time-to-live and forget it
Combine that with the ordering of your data.......

©2014 DataStax. Do not distribute without consent. 71

Time Series TTL'Iing DATASTAX®

INSERT INTO temperature (weatherstation id, date, event time,
temperature) VALUES (‘1234abcd’, ‘2013-12-11', ‘2013-12-11
07:01:00", *“72F') USING TTL 20;

- This data point will automatically be deleted after 20 seconds.
- Eventually you will see all the data disappear.

©2014 DataStax. Do not distribute without consent. 72

Exercise 3

Time series in Twissandra

73 ©2014 DataStax. Do not distribute without consent.

]
Exercise 3 DATASTAX®

Suppose | follow 100,000 people on Twitter who
make 10 tweets per day

How would you change the timeline table to avoid
the large partition problem?

What changes in my queries would this require?

©2014 DataStax. Do not distribute without consent. 74

|
Example code DATASTAX®

http://www.datastax.com/dev/blog/python-driver-
overview-using-twissandra

https://qgithub.com/OpenNMS/newts

©2014 DataStax. Do not distribute without consent. 75

.|
For more on data modeling... DATASTAX®

Data modeling video series by Patrick McFadin

Part 1: The Data Model is Dead, Long Live the

Data Model
nttp://www.youtube.com/watch?v=px6U2n74q39g

Part 2: Become a Super Modeler
http://www.youtube.com/watch?v=gphhxujnSEs

Part 3: The World's Next Top Data Model
http://www.youtube.com/watch?v=HdJIsOZVGwM

©2014 DataStax. Do not distribute without consent.

