
Distributed and Native
Optimizations for Machine
Learning Workloads

Suneel Marthi
June 12, 2017

Berlin Buzzwords, Berlin, Germany

$WhoAmI
Suneel Marthi

Senior Principal Engineer, Office of CTO, Red Hat Inc.
Member of Apache Software Foundation
PMC member on Apache Mahout, Apache OpenNLP, Apache Streams

@suneelmarthi

Agenda
•What is Apache Mahout?

•Mahout Samsara: Declarative, R-like DSL for Matrix Math

•Distributed SSVD

•EigenFaces

•Integration with Apache Zeppelin

•Solve on CPU, GPU or JVM

•What’s Coming Next?

Intro to Apache Mahout

Apache Mahout is an environment for creating scalable, performant, machine-learning

applications

Apache Mahout provides:

● Mathematically Expressive Scala DSL (Samsara)

● A collection of pre-canned Math and Statistics algorithms

● Interchangeable Distributed Engines (Spark, Flink or use your own)

● Interchangeable “Native Solvers” (JVM, CPU, GPU, CUDA, or write your own!)

Recent work on the Project

● v 0.13.1 - In the Works - CUDA Solvers, Scala 2.11 support

● v 0.13.0 - Apr 2017 - GPU/CPU Solvers, algo framework

● v 0.12.2 - Nov 2016 - Apache Zeppelin integration for visualization

● v 0.12.0 - Apr 2016 - Apache Flink Backend support

● Feb 2016- New Mahout Book - ‘Apache Mahout: Beyond MapReduce’ by
Dmitriy Lyubimov and Andrew Palumbo - Feb 2016

● v 0.10.0 - Apr 2015 - Mahout-Samsara vector-math DSL

Mahout Samsara

Mahout Samsara
Mahout-Samsara is an easy-to-use domain-specific language (DSL) for
large-scale machine learning on distributed systems like Apache Spark/Flink

•Uses Scala as programming/scripting environment
•System-agnostic, R-like DSL:

val G = B %*% B.t - C - C.t + (ksi dot ksi) * (s_q cross s_q)
•algebraic expression optimizer for distributed linear algebra

–provides a translation layer to distributed engines
–Support for Spark RDDs and Flink DataSets

Samsara Basics

Data Types
•Scalar real values

•In-memory vectors
–dense
–2 types of sparse

•In-memory matrices
–sparse and dense
–a number of specialized matrices

val x = 2.367

val v = dvec(1, 0, 5)

val w =
 svec((0 -> 1)::(2 -> 5)::Nil)

val A = dense((1, 0, 5),
 (2, 1, 4),
 (4, 3, 1))

Data Types (contd)
•Distributed Row Matrices (DRM)

–huge matrix, partitioned by rows
–lives in the main memory of the cluster
–provides small set of parallelized

 operations
–lazily evaluated operation execution

val drmA = drmDfsRead(...)

Features (1)
•Matrix, vector, scalar operators:
in-memory, distributed

•Slicing operators

•Assignments (in-memory only)

•Vector-specific

drmA %*% drmB
A %*% x
A.t %*% drmB
A * B

A(5 until 20, 3 until 40)
A(5, ::); A(5, 5)
x(a to b)

A(5, ::) := x
A *= B
A -=: B; 1 /:= x

x dot y; x cross y

Features (2)
•Summaries

•Solving linear systems

•In-memory decompositions

A.nrow; x.length; A.colSums; B.rowMeans;
A.norm

val x = solve(A, b)

val (inMemQ, inMemR) = qr(inMemM)
val ch = chol(inMemM)
val (inMemV, d) = eigen(inMemM)
val (inMemU, inMemV, s) = svd(inMemM)

Features (3)

•Distributed decompositions

•Caching of DRMs

val (drmQ, inMemR) = thinQR(drmA)
val (drmU, drmV, s) =
 dssvd(drmA, k = 50, q = 1)

val drmA_cached = drmA.checkpoint()
drmA_cached.uncache()

Unary Operators

mahout> val mxA = dense((1,2,3),(3,4,5))
mxA: org.apache.mahout.math.DenseMatrix =
{
 0 => {0:1.0,1:2.0,2:3.0}
 1 => {0:3.0,1:4.0,2:5.0}
}

mahout> mlog(mxA)
res2: org.apache.mahout.math.Matrix =
{
 0 => {1:0.6931471805599453,2:1.0986122886681098}
 1 => {0:1.0986122886681098,1:1.3862943611198906,2:1.6094379124341003}
}

mahout> msignum(mxA)
res3: org.apache.mahout.math.Matrix =
{
 0 => {0:1.0,1:1.0,2:1.0}
 1 => {0:1.0,1:1.0,2:1.0}}

In-Core

// add some negative numbers in
mahout> val mxB = dense((-1,2,-3),(-3,4,-5))
mxB: org.apache.mahout.math.DenseMatrix =
{
 0 => {0:-1.0,1:2.0,2:-3.0}
 1 => {0:-3.0,1:4.0,2:-5.0}
}

mahout> msignum(mxB)
res7: org.apache.mahout.math.Matrix =
{
 0 => {0:-1.0,1:1.0,2:-1.0}
 1 => {0:-1.0,1:1.0,2:-1.0}
}

In-Core (Contd)

mahout> val drmA = drmParallelize(mxA)

mahout> dlog(drmA).collect

res10: org.apache.mahout.math.Matrix =
{
 0 => {1:0.6931471805599453,2:1.0986122886681098}
 1 => {0:1.0986122886681098,1:1.3862943611198906,2:1.6094379124341003}
}

Distributed Row Matrix (DRM)

Example Algebraic Optimization

Runtime & Optimization
•Execution is deferred, user
composes logical operators

•Computational actions implicitly
trigger optimization (= selection
of physical plan) and execution

•Optimization factors: size of operands, orientation of operands, partitioning, sharing of
computational paths

•e. g.: matrix multiplication:
–5 physical operators for drmA %*% drmB
–2 operators for drmA %*% inMemA
–1 operator for drm A %*% x
–1 operator for x %*% drmA

val drmC = drmA.t %*%
drmA

drmI.dfsWrite(path)
val inMemV =(drmU %*% drmM).collect

Runtime & Optimization (contd.)
•Common computational paths ((A + B)’ %*% (A + B) -> self-square(A + B)

•Tracking identically partitioned sets (“zip” vs. “join” judgements)

•Tracking data deficiencies (missing or duplicate rows)
–automatic fixes

•Algebraic cost reducing rewrites (Expr t) t -> Expr
•Unary operator fusion dlog(X * X) -> elementwise-apply [x => log(x * x)]
•Elements of cost based optimizations (“slim” vs. “wide”)
•Product parallelism decisions
•Explicit and implicit optimization barriers

–control the scope of optimization

Optimization Example
•Computation of ATA in example

•Naïve execution

1st pass: transpose A
(requires repartitioning of A)

2nd pass: multiply result with A
(expensive, potentially requires
repartitioning again)

•Logical optimization:

rewrite plan to use specialized
logical operator for
Transpose-Times-Self matrix
multiplication

val C = A.t %*% A

Optimization Example
•Computation of ATA in example

•Naïve execution

1st pass: transpose A
(requires repartitioning of A)

2nd pass: multiply result with A
(expensive, potentially requires
repartitioning again)

•Logical optimization:

rewrite plan to use specialized
logical operator for
Transpose-Times-Self matrix
multiplication

val C = A.t %*% A

Transpose

A

Optimization Example
•Computation of ATA in example

•Naïve execution

1st pass: transpose A
(requires repartitioning of A)

2nd pass: multiply result with A
(expensive, potentially requires
repartitioning again)

•Logical optimization:

rewrite plan to use specialized
logical operator for
Transpose-Times-Self matrix
multiplication

val C = A.t %*% A

Transpose

MatrixMult

A A

C

Optimization Example
Computation of ATA in example

Naïve execution
1st pass: transpose A
(requires repartitioning of A)

2nd pass: multiply result with A
(expensive, potentially requires
repartitioning again)

Logical optimization

Optimizer rewrites plan to use
specialized logical operator for
Transpose-Times-Self matrix
multiplication

val C = A.t %*% A

Transpose

MatrixMult

A A

C

Transpose-Tim
es-Self

A

C

Transpose-Times-Self
•Mahout Samsara computes ATA via row-outer-product formulation

–executes in a single pass over row-partitioned A

Transpose-Times-Self
•Samsara computes ATA via row-outer-product formulation

–executes in a single pass over row-partitioned A

 A

Transpose-Times-Self
•Samsara computes ATA via row-outer-product formulation

–executes in a single pass over row-partitioned A

x
 A

AT

Transpose-Times-Self
•Samsara computes ATA via row-outer-product formulation

–executes in a single pass over row-partitioned A

x = x

 A
AT

a
1•

a
1•

T

Transpose-Times-Self
•Samsara computes ATA via row-outer-product formulation

–executes in a single pass over row-partitioned A

x = x + x

 A
AT

a
1•

a
1•

T
a

2•
a

2•
T

Transpose-Times-Self
•Mahout computes ATA via row-outer-product formulation

–executes in a single pass over row-partitioned A

x = x + +x x

 A
AT

a
1•

a
1•

T
a

2•
a

2•
T

a
3•

a
3•

T

Transpose-Times-Self
•Samsara computes ATA via row-outer-product formulation

–executes in a single pass over row-partitioned A

x = x + + +x x x

 A
AT

a
1•

a
1•

T
a

2•
a

2•
T

a
3•

a
3•

T
a

4•
a

4•
T

Physical operators for the
distributed computation of ATA

Physical operators for
Transpose-Times-Self

•Two physical operators (concrete implementations)
available for Transpose-Times-Self operation

–standard operator AtA
–operator AtA_slim, specialized
implementation for tall & skinny
matrices

•Optimizer must choose
–currently: depends on user-defined
threshold for number of columns
–ideally: cost based decision, dependent on
estimates of intermediate result sizes

Transpose-Tim
es-Self

A

C

Algorithm for AtA, AtB, etc
Correlated-Cross-Occurrence

● Major extension of Cooccurrence Recommender r = hAtA to include
arbitrary Cross-Occurrences with an LLR correlation test

● A = conversion history for all users, B, C, … = interaction history for all
users

● ha = a single user’s history of conversion as column vector, hb = a single
user’s history of another interaction...

● r = recommended items from A, even if there is no ha and this is new!
● Every cross-occurrence is found with AtA operators and tested for

correlation with LLR.

r = haAtA + hbAtB + hbAtC ….

Backend Agnostic Programming

Distributed SSVD

Stochastic SVD (SSVD)
Given a large matrix A, compute reduced k-rank SVD such that A = UEV

U = Left Singular Vectors
V = Right Singular Vectors
E = Diagonal Matrix with decaying singular values

Singular Vectors sorted in decreasing order of the corresponding singular
values

See Nathan Halko’s Dissertation -
https://amath.colorado.edu/faculty/martinss/Pubs/2012_halko_dissertation.
pdf

https://amath.colorado.edu/faculty/martinss/Pubs/2012_halko_dissertation.pdf
https://amath.colorado.edu/faculty/martinss/Pubs/2012_halko_dissertation.pdf
https://amath.colorado.edu/faculty/martinss/Pubs/2012_halko_dissertation.pdf

Distributed SSVD (DSSVD) inputs
mahout> val (drmU, drmV, s) = dssvd(drmA, k = 90, p = 15, q = 0)

drmA = Input DRM

k = requested decompostion rank

p = oversampling parameter (default = 15)

q = number of power iterations to run (q >= 0)

 Typical q values are 0 or 1.

Note: k, p must satisfy the rqmt that k + p <= rank(A)
 Upper bound of rank(A) = min(drmA.nrows, drmA.ncols)

EigenFaces

● Set of Eigenvectors used for Human Face Recognition
(https://en.wikipedia.org/wiki/Eigenface)

● Smaller set of images to represent original training images by
dimensionality reduction

● Small set of images data to represent many different images

● Trained images are represented as collection of weights

● Classify new images by Nearest-neighbor computation

https://en.wikipedia.org/wiki/Eigenface

Plotting in Mahout - Apache
Zeppelin

Solve on CPU, GPU or JVM

With GPU Integration, the
Mahout syntax will not
change at all.

Credits

● Anand Avati
● Andrew Musselman
● Andrew Palumbo
● Dmitriy Lyubimov
● Nathan Halko
● Pat Ferrel
● Sebastian Schelter

● Trevor D. Grant

● Suneel Marthi

● Alexey Grigorev

● Lucas Schelter

● Ted Dunning

● Zeno Gantner

● Isabel Drost-Fromm

● Drew Farris

● Grant Ingersoll

● Benson Margulies

● Frank Scholten
● Shannon Quinn
● Stevo Slavic

● Gokhan Capan

● Dan Filimon
● Ellen Friedman
● Tom Pierce
● Robin Anil
● Jim Benson

● Paritosh Ranjan

Pointers

•Apache Mahout has extensive documentation on Samsara
–http://mahout.apache.org/users/environment/in-core-reference.html
–https://mahout.apache.org/users/environment/out-of-core-reference.html

• Mahout Committer, Dmitriy Lyubimov’s Blog -
http://www.weatheringthroughtechdays.com/2015/04/mahout-010x-first-ma
hout-release-as.html

• Trevor Grant’s Blog -
https://rawkintrevo.org/2016/05/19/visualizing-apache-mahout-in-r-via-ap
ache-zeppelin-incubating/

https://mahout.apache.org/users/environment/out-of-core-reference.html
https://mahout.apache.org/users/environment/out-of-core-reference.html
http://www.weatheringthroughtechdays.com/2015/04/mahout-010x-first-mahout-release-as.html
http://www.weatheringthroughtechdays.com/2015/04/mahout-010x-first-mahout-release-as.html
http://www.weatheringthroughtechdays.com/2015/04/mahout-010x-first-mahout-release-as.html
https://rawkintrevo.org/2016/05/19/visualizing-apache-mahout-in-r-via-apache-zeppelin-incubating/
https://rawkintrevo.org/2016/05/19/visualizing-apache-mahout-in-r-via-apache-zeppelin-incubating/
https://rawkintrevo.org/2016/05/19/visualizing-apache-mahout-in-r-via-apache-zeppelin-incubating/

Contact Us
Mailing Lists

● dev@mahout.apache.org

● user@mahout.apache.org

Twitter: @ApacheMahout

mailto:dev@mahout.apache.org
mailto:dev@mahout.apache.org
mailto:user@mahout.apache.org
mailto:user@mahout.apache.org

Thank you. Questions?

