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Match indicator

/ AirWatch by VMware / US Atlanta GA Yo .l
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IT Skills: SQL
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Job Category: Sales and Trading
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Faceted search

e Multiple explicit and independent dimensions, called facets
e lets users refine search by choosing values

e No candidate is ideal: many should-have clauses



Scoring of search results

e Term-frequency based metric

e.g. BM25, TF-IDF

e Facetweights
TF-IDF(jobtitle) -
TF-IDF(skill) -
TF-IDF(location) -
TF-IDF(languages)
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Tuning the system: objectives

e “If | search for a skill ‘Java’ | want the candidates that
also have ‘Java’ in their Jobtitle field to be weighted
higher”

e “Education will be a less important match, the more
years of experience a candidate has”

e “We should weight location matches less when finding
candidates in IT”



Learning to rank «f

® Learn a parameterized ranking model
e That optimizes ranking order
® Re-learn for personalization or preference change



Learning to rank by tuning facet weights

e Do exhaustive search for optimal weights to set

e Improved our retrieval by 6% (NDCG metric)

[TF-IDF(jobtitIe), TF-IDF(skill) ... TF-IDF(language) ]
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Tuning facet weights: limitations

e Cannot consider interdependency of facet field dimensions
e Cannot take into account the actual content of fields

o only match indicators



Learning objectives

e Take into account facet field content
e Model facet field interdependencies



Learning to rank

e Machine Learning from user feedback
e Input: set of {query, lists of assessed documents}
o Each document has a relevance indication from feedback

Employer Cambridge Women's Resources Centre Cambridge = X Jobtitle teaching assistant = X

Full text bristol » »*  Age 1980 to 1984 »

| | GARGI AKINMULERO / Teaching Assistant / Bristol l;) | ~
E ELISA Davis / Regional Operations Manager / COVENTRY ﬂ) v

| Bhupesh Das / Senior Accounts Clerk; Accounts Administrator / London o -



Learning to rank

e Machine Learning from user feedback
e Input: set of {query, list of assessed documents}
o Each document has a relevance label from feedback
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Learning to rank

e Algorithm learns how to combine query & document content
to optimize ordering considering relevance labels
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Learning to rank

e Output: model that gives a relevance score given a query
and document
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Dynamic top K reranking
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Dynamic top K reranking
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Typical features

“In learning to rank, each query-document pair is represented by a
multi-dimensional feature vector, and each dimension of the vector is a
feature indicating how relevant or important the document is with respect
to the query.””

Used in LTR papers: 23

e TF-IDF, BM25, DFR, Language Model, cosine similarity, rank in other
engines, etc.

e Match-indicator between whole query & whole document

*"LETOR: A Benchmark Collection for Research on Learning to Rank for
Information Retrieval”, T. Qin, T. Liu, J. Xu, Jun and H. Li, 2010

1"Optimizing Search Engines using Clickthrough Data", T. Joachims, 2003
2 "AdaRank: A Boosting Algorithm for Information Retrieval”, J. Xu and H. Li,
2007

3 "Multileave Gradient Descent for Fast Online Learning to Rank", A. Schuth,
H. Oosterhuis, S. Whiteson and M. de Rijke, 2016



Bag of words

software engineer data mining java amsterdam english

o . N — )
job title: softwarelengineer job title: oreimining|technician
skill: python,|java skill: drilling,|mining
location: berlin location: java

\Janguages: [english,/german  / \ languages: .english,javanese .

4 matches 4 matches



Split up in facet fields

job title skill skill  location language
software engineer data mining java amsterdam english
(o N 7 . )
job title: software engineer | job title: ore mining technician
skill: python,java-/ skill: drilling, mining
location: berlin location: java
\Janguages: |english,/german ) |\ languages: nglish, javanese .
3 matches 1 match




One feature per field

job title skill skill

software engineer data mining java

/
job title: |software engineer
skill: python,|java
location: berlin

~

\Janguages:|english, german )

location language

amsterdam english

feature vector
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Dynamic top K reranking
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Linear models

e Used in many papers:
o seminal papers/,
o papers about leveraging user preferences?®
o papers about online learning / interleaving®

e Alsoin e.g. documentation about Solr’'s LTR contrib
module

1“Optimizing Search Engines using Clickthrough Data”, T. Joachims, 2003
2 “A contextual-bandit approach to personalized news article
recommendation”, L. Li, W. Chu, J. Langford, and R. E. Schapire, 2010.

3 “Balancing exploration and exploitation in listwise and pairwise online
learning to rank for information retrieval”, K. Hofmann, S.Whiteson, M. de
Rijke, 2013



Linear models

End up with weight vector you can
multiply with feature vectors.

w1
w2

f1 f2 f3 ... fn|- |w3| = score




Linear models

End up with weight vector you can
multiply with feature vectors.

——m

1.0 0.5 0.0 .. ws

R~

SCore




Tuning facet weights: limitations &

e Cannot consider interdependency of facet field dimensions
e Cannot take into account the actual content of fields

o only match indicators
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Objectives

e “If | search for a skill ‘Java’ | want the candidates that
also have ‘Java’ in their Jobtitle field to be weighted
higher”

e “Education will be a less important match, the more
years of experience a candidate has”

e “We should weight location matches less when finding
candidates in IT”



Learning objectives

e Take into account facet field content
e Model facet field interdependencies



Take into account facet field content

OO 1.0 0.0 0.0 0.0 0.5 OO

Categorical feature Interval feature



Take into account facet field content

e Query-document match

features Categorical: e.g. denoting
e Document features job-class, skill etc.
e Query features Interval: e.g. years of

experience



Model facet field interdependencies
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Model facet field interdependencies

Use nonlinear ranking model based on e.g.
e Nonlinear neural networks
e Nonlinear SVM
e Decision trees



Model facet field interdependencies

Decision tree
experience_years

A

location_match jobclass_doc_Management

AN AN



Model facet field interdependencies

job_class_doc_IT >0

TN

location_match <=0 location_match <=0

Decision tree



Model facet field interdependencies

e “We should weight location matches less when

finding candidates in IT”

_]Ob class_ doc IT >0

location_ match< 0 Iocatlon match <= 0

NN



Model facet field interdependencies

e “If | search for a skill ‘Java’ | want the candidates that
also have ‘Java’ in their Jobtitle field to be weighted

higher” /

skill _Java >0

/\

jobtitle_word_Java >0

1.5 0.9



Model facet field interdependencies

e “If | search for a skill ‘Java’ | want the candidates that
also have ‘Java’ in their Jobtitle field to be weighted

higher”

jobtitle__contains_word_from_skill >0

1.4 0.8



Model facet field interdependencies

e “Education will be a less important match, the more
years of experience a candidate has”

/

experience_years > 0.2

/\

experience_years > 0.4 education_match >0
: \ 1.0 0.2
experience_years > 0.6 education_match >0

v -~ N

0.9 0.5



Scores

model type

algorithm

performance

Linear

Ridge regression

NDCG +6%

Decision tree

LambdaMART

NDCG +16%

Decision tree

Random Forests

NDCG +22%




Scores: risk vs. reward

"baseline"” vs "reranking-model"

300 queries

@ paseline
@ reranking-model
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Execution time

o Applying reranking on top 100

o index: 1,000,000 documents

o model: 1000 trees, each max. 7 leaves
e Original library: +22%



Execution time

Culprit: transformation from internal API object

to ranking-library object
(done for each query-document pair)

feature
extraction double[] features ->
String features ->

DataPoint { String relevance_label;

String query__id;
String description;
float[] features}

ranking
model




Execution time

After refactoring model application

feature :
[ J—-) double[] features —>{ ranking

extraction model

Avg. query execution time increase: +4%



Next steps: Implicit user feedback gathering

e Transform user actions to feedback signals

o transformation model may differ per customer
e Avoid modeling an action loop

o ..unless you want to optimize an action

o validate with human-made assessments
e Avoid modeling a reinforcing feedback loop

o deal with position / selection bias



extracted
click
features

click-to-signal
classification

Implicit feedback gathering

Fold Max Classifier

explicit feedback
assessments

validate
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Implicit feedback gathering

Fold Max Classifier

explicit feedback
assessments
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e Faceted search can be really improved by LTR
o With minimal impact on execution times
e By determining your general learning objectives

o Selecting features and algorithm accordingly and
In harmony

e Ranking models aren’t static

o Differ in performance per query type / user



Any questions?

contact:
join us:



