

Berlin Buzzwords

Querying Elasticsearch with Deep Learning to Answer Natural Language Questions

Sebastian Blank, Hans-Peter Zorn

Berlin, 2019-06-17

Sebastian Blank

Data Scientist @ inovex

Hans-Peter Zorn

Dr. Florian Wilhelm ØFlorianWilhelm Prof. Dr. Achim Rettinger Universität Trier

- 1. Use Case
- 2. Approach
- 3. Results
- 4. Learnings

Use Case

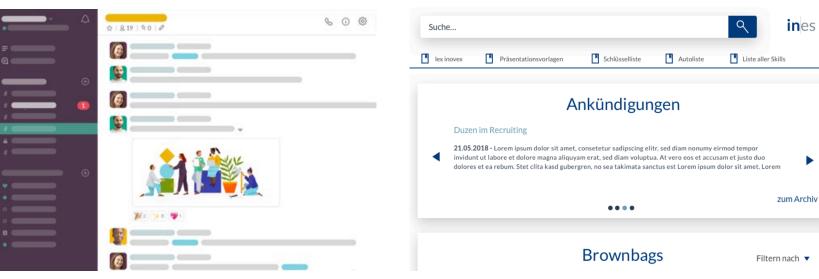
Voice Control will shape our lifes

"You will be able to do pretty much anything via voice command."

Elon Musk about Teslas Model 3

"Speech is going to be the interface at home." Kenn Harper, Nuance Communications

How it started



Conversations require background information

Who is the president of the United States?

Which customers received a coupon and used it in our shop?

Who starred in Avatar?

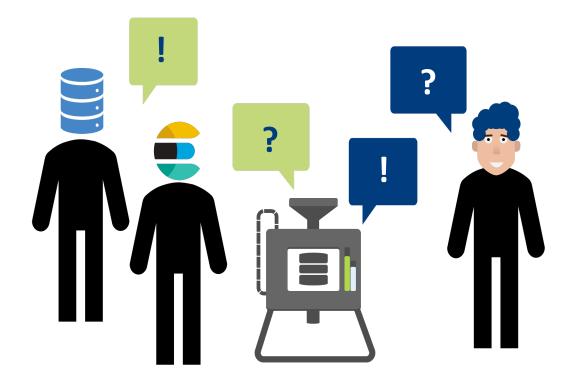
What appointments do I have tomorrow?

Query languages impede access to information

Leveraging DL to overcome this barrier

› Hard lookup

Soft lookup

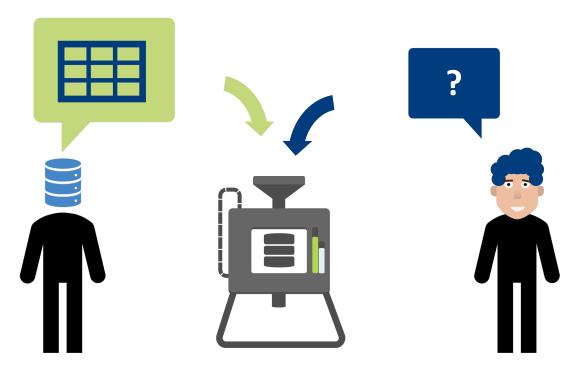


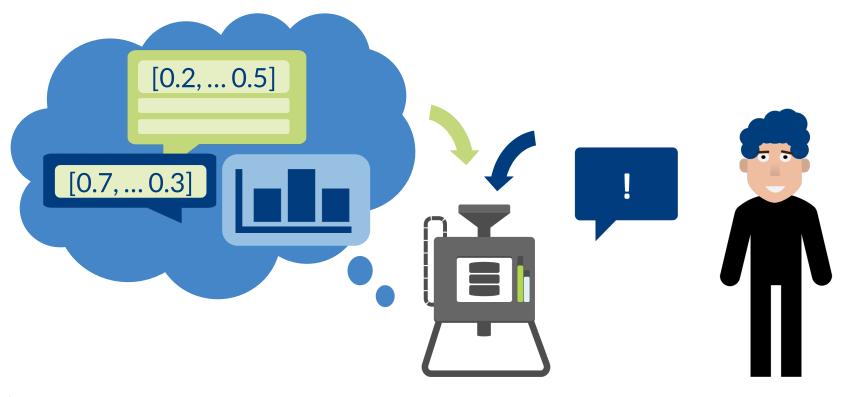
Hard lookup

P

How to access a database with natural language?

- Hard lookup
 - interpretable (+)
 - existing API (+)
 - > non-differentiable (-)
 - not end-to-end trainable (-)
 - labelling is costly (-)





How to access a database with natural language?

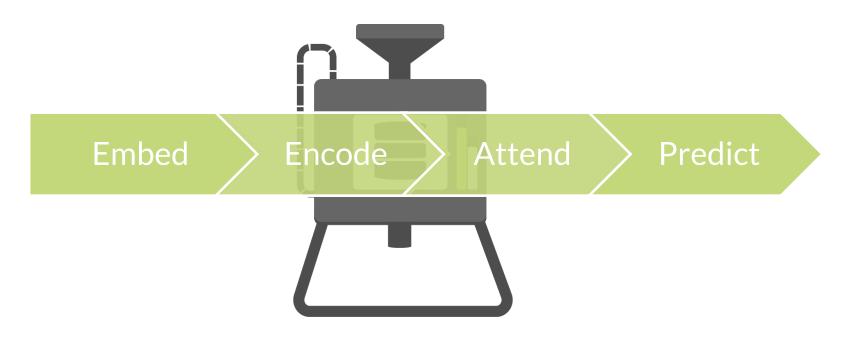
- Hard lookup
 - interpretable (+)
 - existing API (+)
 - > non-differentiable (-)
 - > not end-to-end trainable (-)
 - labelling is costly (-)

- Soft lookup
 - > end-to-end trainable (+)

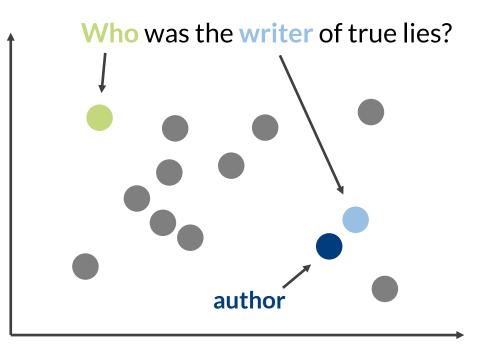
- > hard to interpret (-)
- impeded by security & privacy issues (-)
- capacity (-)

Approach

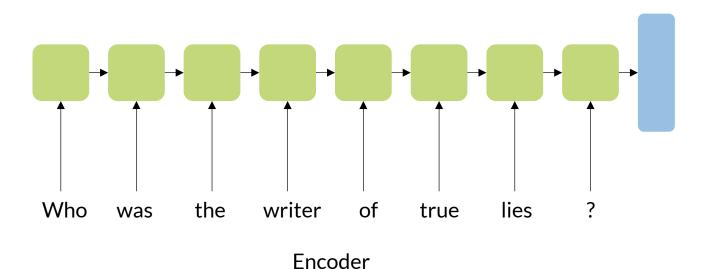
Let's build this machine



Representing words as continuous vectors

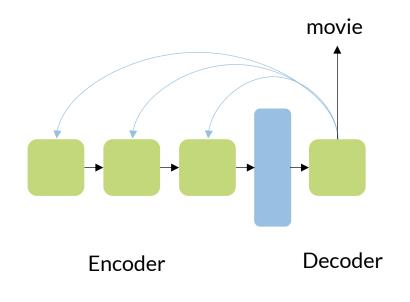


Creating a context representation of a sequence



Decoding with Attention

Focussing on important subsets of the input



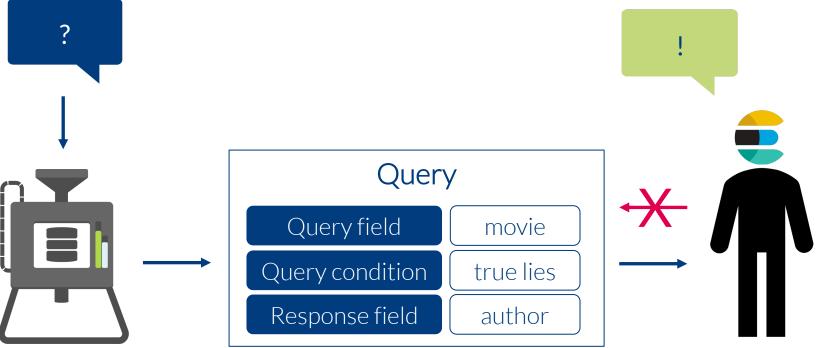
Pointer Network

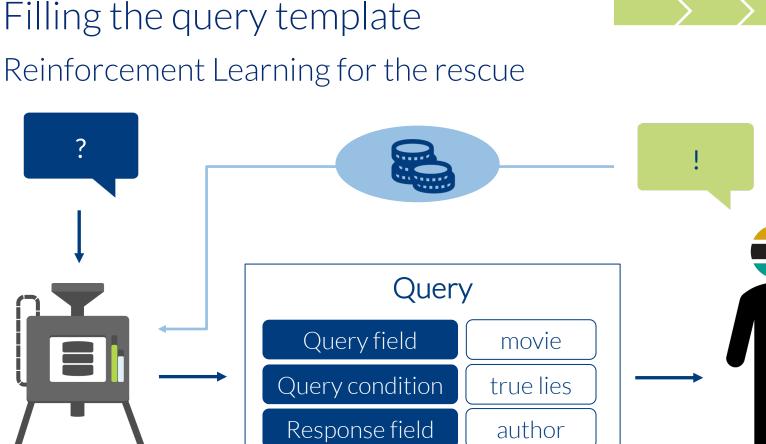
[...] where v, W_s and W_t are trainable parameters and a decoder hidden state h_t is scored against an encoder hidden state \bar{h}_s . Pointer attention significantly decreases the output space and therefore reduces [...]

Training Procedure

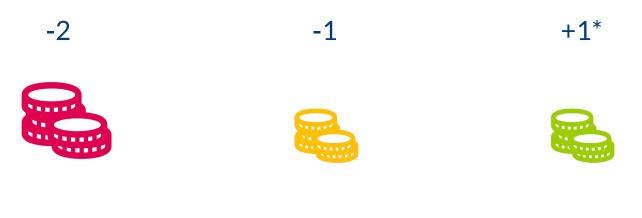
For our benchmark, we implement PointerNet with a bidirectional twolayer LSTM as encoder and a unidirectional two-layer LSTM as decoder, where all recurrent layers consist of 100 units. [...]

Filling the query template Non-differentiability impedes end-to-end training





Rewards



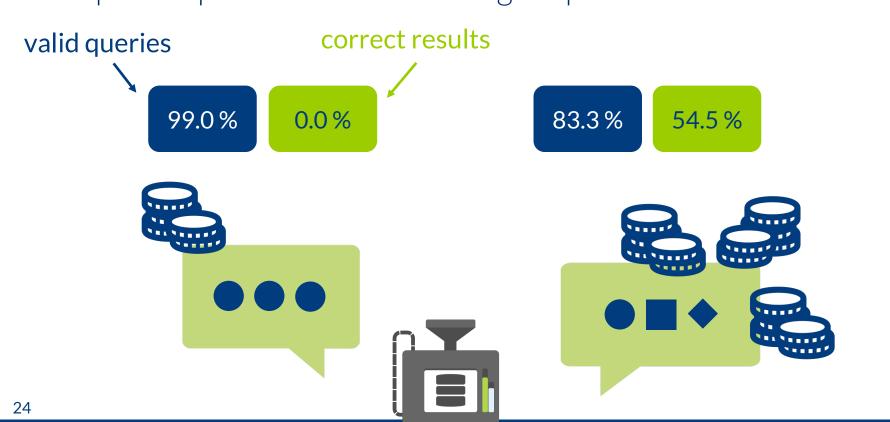
invalid queries

valid queries incorrect results

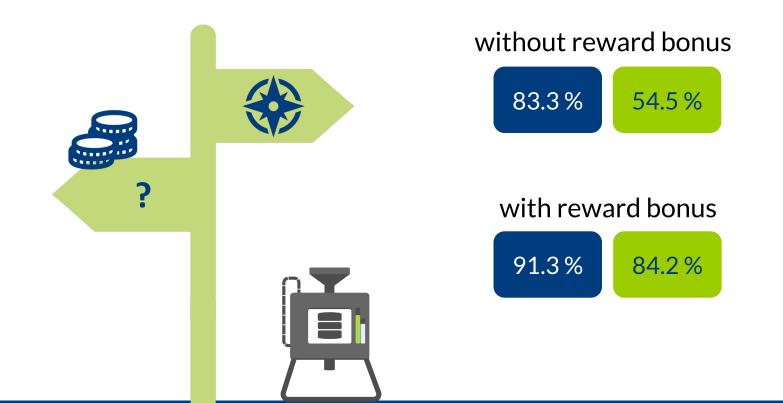
valid queries correct results

Results

Design of the reward function matters Improved performance due to higher positive rewards

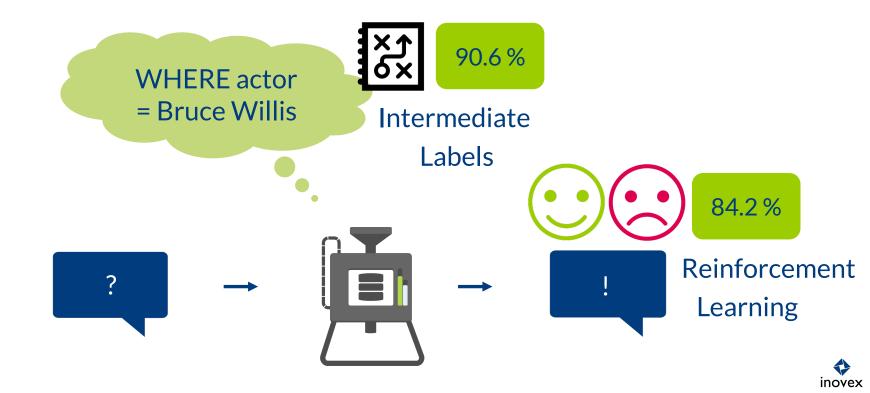


Design of the reward function matters Exploration boni improve performance

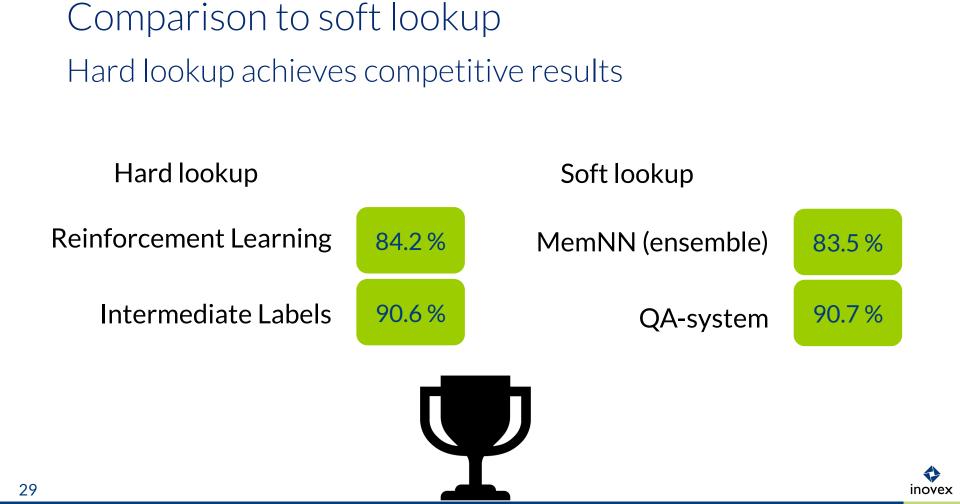


Natural language is ambiguous Correct queries yield wrong results (~4%)

Comparison to supervised baseline Intermediate labels provide a better feedback signal



Comparison to supervised baseline Reinforcement learning requires a **LOT** of resources



- We applied a Seq2Seq approach with pointer attention to create database queries from natural language questions.
- Our model achieves end-to-end trainability due to the usage of policy-based Reinforcement Learning and thereby avoids costly intermediate labels.
- Furthermore, we overcome local optima through exploration induced by count-based reward boni.

> More complex questions & different corpora

Improve sample-efficiency of RL

Reduce latencies of database interaction

https://www.inovex.de/blog/

https://www.inovex.de/blog/seqpolicynet-nlp-elasticsearch/

http://www.aifb.kit.edu/images/d/d3/IAAI-19_paper_88.pdf

Thank you !

Sebastian Blank Data Scientist

inovex GmbH Ludwig-Erhard-Allee 6 76131 Karlsruhe

sebastian.blank@inovex.de

