
Kafka Security

Sönke Liebau – Co-Founder and Partner @ OpenCore

June 10th 2018

A brief overview of its history, current state and how it can 
be customized



Who am I?

• Partner & Co-Founder at OpenCore
• Small consulting company with a Big Data & Open Source focus

• Specialized in Kafka & Elasticsearch

• Contact
• soenke.liebau@opencore.com

• @soenkeliebau

Website: www.opencore.com



What is Kafka?

• Kafka is a distributed, topic-
oriented, partitioned, replicated
commit log

• Kafka is also a publish-subscribe
messaging system



Where does Kafka fit in your architecture?

Source: https://www.confluent.io/blog/announcing-kafka-connect-building-large-scale-low-latency-data-pipelines

https://www.confluent.io/blog/announcing-kafka-connect-building-large-scale-low-latency-data-pipelines


5

Security - The Past



© 2018 OpenCore GmbH & Co. KG 6

Security – What happened since then

SSL & Kerberos SASL Plain
SASL 

SCRAM
Delegation 

Tokens



© 2018 OpenCore GmbH & Co. KG 7

Security – What happened since then

Kafka version Authentication method Jira KIP

0.9.0.0 SSL KAFKA-1690 KIP 12

0.9.0.0 SASL GSSAPI (Kerberos) KAFKA-1686 KIP 12

0.10.0.0 SASL Plain KAFKA-3149 KIP 43

0.10.2.0 SASL SCRAM KAFKA-3751 KIP 84

1.1.0 Delegation Tokens KAFKA-1696 KIP 48



© 2018 OpenCore GmbH & Co. KG 8

Terms & Acronyms

SASL - Simple Authentication and Security Layer

JAAS - Java Authentication and Authorization Service

GSSAPI - Generic Security Services Application Program Interface

SCRAM – Salted Challenge Response Authentication Method



Authentication (1) – SSL

• Certificates are signed by a trusted
authority

• Client checks the servers certificate
against CAs they trust and verifies
information from certificate

• Client presents a certificate to the server
which checks it agains known CAs

• Information from Client Cert is made
available for authentication

© 2018 OpenCore GmbH & Co. KG 9



Authentication (2) – SASL_Plain

© 2018 OpenCore GmbH & Co. KG 10

• Username & Password Authentication

• Users by default are stored directly in the JAAS file

• Custom implementations possible to retrieve credentials externally

• Unless combined with TLS this will transmit the password in cleartext!



Authentication (3) – SASL_SCRAM

© 2018 OpenCore GmbH & Co. KG 11

• No passwords need to be transmitted

• Allows binding to TLS for added security



© 2018 OpenCore GmbH & Co. KG 12

Authentication (4) – SASL_GSSAPI

• Generic Security Services Application Program Interface
• Kerberos is the main implementation in use today

• Useful for integration with Microsoft AD or similar directory services

• Authentication is based on Tickets and Principals
• User Principals Name (UPN) – soenke@OPENCORE.COM

• Service Principal Name (SPN) – kafka/server1@OPENCORE.COM

• Inital authentication via password or keytab to retrieve a ticket granting
ticket
• TGT is then used to retrieve service tickets

• TGT expires



© 2018 OpenCore GmbH & Co. KG 13

Authentication (5) – SASL_GSSAPI



© 2018 OpenCore GmbH & Co. KG 14

Authentication (6) – Delegation tokens

• Invention from the Hadoop world

• New in Kafka 1.1.0

• Allow the user to obtain a token from Kafka
• Use this token to authenticate the user

• Only valid for Kafka

• Only valid for a limited amount of time

• Secondary form of authentication, cannot be used to obtain a new token after it has
expired

• Often used in distributed long running jobs (i.e. Spark Streaming)



© 2018 OpenCore GmbH & Co. KG 15

Authentication (7) – Delegation Tokens



© 2018 OpenCore GmbH & Co. KG 16

Broker Configuration

• Brokers can support multiple methods of authentication at the same time 
by defining listeners

• Listeners
• SASL_PLAIN

• PLAINTEXT

• SSL_SASL_PLAIN

• …

• A distinction can be made between internal and external traffic
• NAT situations used to be complicated (not possible)

• Since version 0.10.2.0 a clean separation can be defined



© 2018 OpenCore GmbH & Co. KG 17

Authorization

• To enable access control beyond a simple access/no access scenario
authorization is needed

• Kafka introduced ACLs for this in 0.9.0.0 and added the
SimpleAclAuthorizer class
• Based on ACLs that are stored in Zookeeper

• ACLs are based on resources

• Superusers can be defined that are allowed anything

• Entire authentication mechanism is pluggable



© 2018 OpenCore GmbH & Co. KG 18

ACLs

• ACLs grant rights per resource
• Topic , Consumer Group, Cluster

• No wildcards beyond „*“ – Yet!

• Available actions:
• Create, Read, Write, Delete, Describe, ClusterAction

• IP addresses can be used to limit users
• No wildcards beyond „*“ or ranges

• Allow or Deny
• Deny takes precedence

• Default no ACL matches



© 2018 OpenCore GmbH & Co. KG 19

ACL CLI examples (1)



© 2018 OpenCore GmbH & Co. KG 20

ACL CLI examples (2)



© 2018 OpenCore GmbH & Co. KG 21

ACL CLI examples (3)



© 2018 OpenCore GmbH & Co. KG 22



© 2018 OpenCore GmbH & Co. KG 23



© 2018 OpenCore GmbH & Co. KG 24

Authorization Sequence



© 2018 OpenCore GmbH & Co. KG 25

Authorization

Client

Client

Client

Client

PLAINTEXT

SSL

SCRAM

GSSAPI

./kafka-acls
--authorizer-properties zookeeper.connect=localhost:2181
--add 
--allow-principal ???
--operation All 
--topic '*'
--group '*'

SimpleAcl
Authorizer



© 2018 OpenCore GmbH & Co. KG 26

Principals

Client

Client

Client

Client

PLAINTEXT

SSL

SCRAM

GSSAPI

SimpleAcl
Authorizer

PrincipalBuilder

./kafka-acls
--authorizer-properties zookeeper.connect=localhost:2181
--add 
--allow-principal Principal
--operation All 
--topic '*'
--group '*'



© 2018 OpenCore GmbH & Co. KG 27

Principal From Authentication

Authentication Method Principal

PLAINTEXT ANONYMOUS

SSL (without client authentication) ANONYMOUS

SASL_PLAIN Username

SASL_SCRAM Username

SASL_GSSAPI Kerberos UPN (sliebau@OPENCORE.COM)
Configurable via auth-to-local rules in config.

SSL (with client authentication) Built from Certificate details:
CN=writeuser,OU=Unknown,O=Unknown,L=Unknown,ST=
Unknown,C=Unknown



© 2018 OpenCore GmbH & Co. KG 28

Authorization Sequence



© 2018 OpenCore GmbH & Co. KG 29

Extending Kafka Authorization

• PrincipalBuilder and Authorizer are both configurable
• principal.builder.class

• authorizer.class.name

• Two projects have implementations available
• Ranger

• Sentry



© 2018 OpenCore GmbH & Co. KG 30

BYO - Objective

Enable definition of ACLs based on Active Directory groups
instead of individual users



© 2018 OpenCore GmbH & Co. KG 31

BYO - Tasks

• Create a PrincipalBuilder that retrieves groups from AD for a username

• Create a Principal that can store group information

• Create an Authorizer that understands the stored groups and applies ACLs

• Enable the user to create and manage ACLs



© 2018 OpenCore GmbH & Co. KG 32

Extended Principal To Store Group Information



BYO – Group lookup

• Steal this part from Hadoop
• GroupMappingServiceProvider

• Checks against local groups
• Manifest with SSSD, Centrify, … 

• Other implementations
available

© 2018 OpenCore GmbH & Co. KG 33



© 2018 OpenCore GmbH & Co. KG 34

ACL matching



© 2018 OpenCore GmbH & Co. KG 35

BYO – Putting It To The Test



© 2018 OpenCore GmbH & Co. KG 36

BYO – Code Along

For more details on the custom authorizer presented here as well as the full
code used please visit: 

https://www.opencore.com/blog/2018/3/2018-group-based-authorization-in-kafka

https://www.opencore.com/blog/2018/3/2018-group-based-authorization-in-kafka


Thank You!
@soenkeliebau

© 2018 OpenCore GmbH & Co. KG


