
Wikimedia Content API:
A Cassandra Use-case

Eric Evans <eevans@wikimedia.org>
@jericevans

Berlin Buzzwords | June 6, 2016

Our Vision:
A world in which every single human can freely
share in the sum of all knowledge.

About:
● Global movement
● Largest collection of free, collaborative knowledge in human history
● 16 projects
● 16.5 billion total page views per month
● 58.9 million unique devices per day
● More than 13k new editors each month
● More than 75k active editors month-to-month

About: Wikipedia
● More than 38 million articles in 290 languages
● Over 10k new articles added per day
● 13 million edits per month
● Ranked #6 globally in web traffic

Wikimedia Architecture

LAMP

THE ARCHITECTURE

ALL OF IT

Wikitext
= Star Wars: The Force Awakens =

Star Wars: The Force Awakens is a 2015 American epic space opera

film directed, co-produced, and co-written by [[J. J. Abrams]].

HTML
<h1>
 Star Wars: The Force Awakens
</h1>

<p>
 Star Wars: The Force Awakens is a 2015 American epic space opera
 film directed, co-produced, and co-written by

 J. J. Abrams

</p>

Wikitext

HTML

Conversion

wikitext html

WYSIWYG

Conversion

wikitext html

Character-based diffs

Metadata

[[Foo|bar]]

bar

Metadata

[[Foo|{{echo|bar}}]]

 <span about="#mwt1" typeof="mw:Object/Template"

 data-parsoid="{...}" >bar

Parsoid
● Node.js service
● Converts wikitext to HTML/RDFa
● Converts HTML/RDFa to wikitext
● Semantics, and syntax (avoid dirty diffs)!
● Expensive (slow)
● Resulting output is large

RESTBase
● Services aggregator / proxy (REST)
● Durable cache (Cassandra)
● Wikimedia’s content API (e.g. https://en.wikipedia.org/api/rest_v1?doc)

Cassandra

RESTBase

RESTBase

Parsoid

Other use-cases
● Mobile content service
● Math formula rendering service
● Dumps
● ...

Cassandra

Environment
● 2 datacenters
● 3 racks per datacenter
● 18 hosts (16 core, 128G, SSDs)
● 54 nodes
● Deflate compression (~14-18%)
● 31T storage (~206T uncompressed)
● Cassandra 2.1.13 (moving to 2.2.6)
● Read-heavy workload (5:1)

Data model

Data model

CREATE TABLE data (

 domain text,

 title text,

 rev int,

 tid timeuuid,

 value blob,

 PRIMARY KEY ((domain, title), rev, tid)

) WITH CLUSTERING ORDER BY (rev DESC, tid DESC)

Data model

en.wikipedia.org + Star_Wars:_The_Force_Awakens

717862573 717873822

...97466b12...7c7a913d3d8a1f2dd66c...7c7a913d3d8a

...

09877568...7c7a913d3d8a

bdebc9a6...7c7a913d3d8a827e2ec2...7c7a913d3d8a

Compression

Compression

chunk_length_kb

Compression

chunk_length_kb

Brotli compression
● Brought to you by the folks at Google; Successor to deflate
● Cassandra implementation (https://github.com/eevans/cassandra-brotli)
● Initial results very promising
● Better compression, lower cost (apples-apples)
● And, wider windows are possible (apples-oranges)

○ GC/memory permitting
○ Example: level=1, lgblock=4096, chunk_length_kb=4096, yields 1.73% compressed size!
○ https://phabricator.wikimedia.org/T122028

● Stay tuned!

https://github.com/eevans/cassandra-brotli
https://phabricator.wikimedia.org/T122028
https://phabricator.wikimedia.org/T122028

Compaction

Compaction
● The cost of having log-structured storage
● Asynchronously (post-write) optimize data on disk for reads
● At a minimum, reorganize into fewer files

○ Dropping what is obsolete
○ Expiring TTLs
○ Removing deleted (aka tombstoned) data (after a fashion)

● Reorganize data so results are nearer each other

Compaction strategies
● Size-tiered

○ Combines tables of similar size
○ Oblivious to column distribution; Works best for workloads with no overwrites/deletes
○ Minimal IO

● Leveled
○ Small, fixed size files in levels of exponentially increasing size
○ Files have non-overlapping ranges within a level
○ Very efficient reads, but also quite IO intensive

● Date-tiered
○ For append only, total ordered data
○ Avoids mixing old data with new
○ Cold data eventually ceases to be compacted

Compaction strategies
● Size-tiered

○ Combines tables of similar size
○ Oblivious to column distribution; Works best for workloads with no overwrites/deletes
○ Minimal IO

● Leveled
○ Small, fixed size files in levels of exponentially increasing size
○ Files have non-overlapping ranges within a level
○ Very efficient reads, but also quite IO intensive

● Date-tiered
○ For append only, total ordered data
○ Avoids mixing old data with new
○ Cold data eventually ceases to be compacted OMG, THIS!

DTCS: Well...no, actually
● Hard to reason about
● Optimizations easily defeated
● See: https://phabricator.wikimedia.org/T126221

https://phabricator.wikimedia.org/T126221

DTCS: So now what?
● Size-tiered compaction? Might as well.
● TimeWindowCompactionStrategy (https://github.com/jeffjirsa/twcs)?

Maybe...
● Reduce node density?

https://github.com/jeffjirsa/twcs

Garbage Collection

G1GC
● Early adopters of G1 (aka “Garbage 1st”)
● Successor to Concurrent Mark-sweep (CMS)
● Incremental parallel compacting collector
● More predictable performance than CMS

Humongous objects
● Anything >= ½ region size is classified as Humongous
● Humongous objects are allocated into Humongous Regions
● Only one object for a region (wastes space, creates fragmentation)
● Until 1.8u40, humongous regions collected only during full collections (Bad)
● Since 1.8u40, end of the marking cycle, during the cleanup phase (Better)
● Treated as exceptions, so should be exceptional

○ For us, that means 8MB regions

● Enable GC logging and have a look!

Node density

“Many smaller-sized Cassandra nodes is
always better than fewer, dense ones.”

— Everyone

Motivation
● Compaction
● GC
● ...

What we do
● Processes (yup)
● Puppetized configuration

○ /etc/cassandra-a/

○ /etc/cassandra-b/

○ systemd units
○ Etc

● Shared RAID-0

What we should have done
● Virtualization
● Containers
● Blades
● Not processes

Cassandra: The Good
● Fault-tolerance
● Availability
● Datacenter / rack awareness
● Visibility
● Ubiquity
● Nice, helpful people (tickets, IRC, etc)

Cassandra: The Bad
● Usability

○ Compaction
○ Streaming
○ JMX
○ etc

● Vertical scaling
● JVM

Cassandra: The Ugly
● Upgrading
● Release process

