

An Introduction to
The Beam Model

Slides by Tyler Akidau & Frances Perry, April 2016

Apache Beam
(incubating)

Infinite, Out-of-order Data Sets

The Evolution of the Beam Model

What, Where, When, How

Agenda

Apache Beam (incubating)

2

4

1

3

 Infinite Out-of-Order Data Sets1

Goals:

Write interesting
computations

Run in both batch &
streaming

Use custom timestamps

Handle late data

https://commons.wikimedia.org/wiki/File:Globe_centered_in_the_Atlantic_Ocean_(green_and_grey_globe_scheme).svg

Data...

...can be big...

...really, really big...

Tuesday
Wednesday

Thursday

… maybe infinitely big...

9:008:00 14:0013:0012:0011:0010:002:001:00 7:006:005:004:003:00

… with unknown delays.

9:008:00 14:0013:0012:0011:0010:00

8:00

8:008:00

1 + 1 = 2
Completeness Latency Cost

$$$

Data Processing Tradeoffs

Requirements: Billing Pipeline

Completeness Low Latency Low Cost

Important

Not Important

Requirements: Live Cost Estimate Pipeline

Completeness Low Latency Low Cost

Important

Not Important

Requirements: Abuse Detection Pipeline

Completeness Low Latency Low Cost

Important

Not Important

Requirements: Abuse Detection Backfill Pipeline

Completeness Low Latency Low Cost

Important

Not Important

 The Evolution of the Beam Model2

(Produce)

MapReduce: Batch Processing

(Prepare)

Map

(Shuffle)

Reduce

FlumeJava: Easy and Efficient MapReduce Pipelines

● Higher-level API with simple data
processing abstractions.
○ Focus on what you want to do to

your data, not what the
underlying system supports.

● A graph of transformations is
automatically transformed into an
optimized series of MapReduces.

MapReduce

Batch Patterns: Creating Structured Data

MapReduce

Batch Patterns: Repetitive Runs

Tuesday
Wednesday

Thursday

MapReduce

Tuesday [11:00 - 12:00)

[12:00 - 13:00)

[13:00 - 14:00)

[14:00 - 15:00)

[15:00 - 16:00)

[16:00 - 17:00)

[18:00 - 19:00)

[19:00 - 20:00)

[21:00 - 22:00)

[22:00 - 23:00)

[23:00 - 0:00)

Batch Patterns: Time Based Windows

MapReduce

TuesdayWednesday

Batch Patterns: Sessions

Jose

Lisa

Ingo

Asha

Cheryl

Ari

WednesdayTuesday

MillWheel: Streaming Computations

● Framework for building low-latency
data-processing applications

● User provides a DAG of
computations to be performed

● System manages state and
persistent flow of elements

Streaming Patterns: Element-wise transformations

13:00 14:008:00 9:00 10:00 11:00 12:00 Processing
Time

Streaming Patterns: Aggregating Time Based Windows

13:00 14:008:00 9:00 10:00 11:00 12:00 Processing
Time

Streaming Patterns: Event-Time Based Windows

Event Time

Processing
Time 11:0010:00 15:0014:0013:0012:00

11:0010:00 15:0014:0013:0012:00

Input

Output

Streaming Patterns: Session Windows

Event Time

Processing
Time 11:0010:00 15:0014:0013:0012:00

11:0010:00 15:0014:0013:0012:00

Input

Output

Formalizing Event-Time Skew

Watermarks describe event time
progress.

"No timestamp earlier than the
watermark will be seen"

Often heuristic-based.

Too Slow? Results are delayed.
Too Fast? Some data is late.

Streaming or Batch?

1 + 1 = 2 $$$
Completeness Latency Cost

Why not both?

 What, Where, When, and How3

What are you computing?

Where in event time?

When in processing time?

How do refinements relate?

What are you computing?

What Where When How

Element-Wise Aggregating Composite

What: Computing Integer Sums

// Collection of raw log lines
PCollection<String> raw = IO.read(...);

// Element-wise transformation into team/score pairs

PCollection<KV<String, Integer>> input =

raw.apply(ParDo.of(new ParseFn());

// Composite transformation containing an aggregation
PCollection<KV<String, Integer>> scores =

input.apply(Sum.integersPerKey());

What Where When How
*All code snippets are pseudo-java -- details shortened or elided for clarity.

What: Computing Integer Sums

What Where When How

What: Computing Integer Sums

What Where When How

Windowing divides data into event-time-based finite chunks.

Often required when doing aggregations over unbounded data.

Where in event time?

What Where When How

Fixed Sliding
1 2 3

54

Sessions

2

431

Key
2

Key
1

Key
3

Time

1 2 3 4

Where: Fixed 2-minute Windows

What Where When How

PCollection<KV<String, Integer>> scores = input

 .apply(Window

 .into(FixedWindows.of(Duration.standardMinutes(2)))

 .apply(Sum.integersPerKey());

Where: Fixed 2-minute Windows

What Where When How

When in processing time?

What Where When How

• Triggers control
when results are
emitted.

• Triggers are often
relative to the
watermark.

When: Triggering at the Watermark

What Where When How

PCollection<KV<String, Integer>> scores = input

 .apply(Window

 .into(FixedWindows.of(Duration.standardMinutes(2))

 .triggering(AtWatermark()))

 .apply(Sum.integersPerKey());

When: Triggering at the Watermark

What Where When How

When: Early and Late Firings

What Where When How

PCollection<KV<String, Integer>> scores = input

 .apply(Window

 .into(FixedWindows.of(Duration.standardMinutes(2))

 .triggering(AtWatermark()

 .withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))

 .withLateFirings(AtCount(1))))

 .apply(Sum.integersPerKey());

When: Early and Late Firings

What Where When How

How do refinements relate?

What Where When How

• How should multiple outputs per window
accumulate?

• Appropriate choice depends on consumer.

Firing Elements

Speculative 3

Watermark 5, 1

Late 2

Total Observ 11

Discarding

3

6

2

11

Accumulating

3

9

11

23

Acc. & Retracting*

3

9, -3

11, -9

11

*Accumulating & Retracting not yet implemented in Apache Beam.

How: Add Newest, Remove Previous

What Where When How

PCollection<KV<String, Integer>> scores = input

 .apply(Window

 .into(Sessions.withGapDuration(Duration.standardMinutes(1)))

 .triggering(AtWatermark()

 .withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))

 .withLateFirings(AtCount(1)))

 .accumulatingAndRetractingFiredPanes())

 .apply(Sum.integersPerKey());

How: Add Newest, Remove Previous

What Where When How

1.Classic Batch 2. Batch with Fixed
Windows

3. Streaming 5. Streaming With
Retractions

4. Streaming with
Speculative + Late Data

Customizing What When Where How

What Where When How

Apache Beam (incubating) 4

The Dataflow Model & Cloud Dataflow

Dataflow Model & SDKs

a unified model for
batch and stream processing

no-ops, fully managed service

Google Cloud Dataflow

a unified model for
batch and stream processing
 supporting multiple runtimes

a great place to run Beam

Apache Beam Google Cloud Dataflow

The Dataflow Model & Cloud Dataflow Beam

1. The Beam Model: What / Where / When / How

2. SDKs for writing Beam pipelines -- starting with Java

3. Runners for Existing Distributed Processing Backends
• Apache Flink (thanks to data Artisans)
• Apache Spark (thanks to Cloudera)
• Google Cloud Dataflow (fully managed service)
• Local (in-process) runner for testing

What is Part of Apache Beam?

1. End users: who want to write
pipelines in a language that’s
familiar.

2. SDK writers: who want to make
Beam concepts available in new
languages.

3. Runner writers: who have a
distributed processing
environment and want to support
Beam pipelines

Apache Beam Technical Vision

Beam Model: Fn Runners

Runner A Runner B

Beam Model: Pipeline Construction

Other
LanguagesBeam Java Beam

Python

Execution Execution

Cloud
Dataflow

Execution

Categorizing Runner Capabilities

http://beam.incubator.apache.org/capability-matrix/

Collaborate - Beam is becoming a community-
driven effort with participation from many
organizations and contributors

Grow - We want to grow the Beam ecosystem
and community with active, open involvement
so Beam is a part of the larger OSS ecosystem

Growing the Beam Community

Apache Beam Roadmap

02/01/2016
Enter Apache

Incubator

Early 2016
Internal API redesign

Slight Chaos

Mid 2016
API Stabilization

Late 2016
Multiple runners
execute Beam

pipelines

02/25/2016
1st commit to
ASF repository

The Evolution of Apache Beam

MapReduce

Google Cloud
Dataflow

Apache
Beam

BigTable DremelColossus

FlumeMegastoreSpanner

PubSub

Millwheel

Learn More!

Apache Beam (incubating)
http://beam.incubator.apache.org

The World Beyond Batch 101 & 102
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

Join the Beam mailing lists!
user-subscribe@beam.incubator.apache.org
dev-subscribe@beam.incubator.apache.org

Follow @ApacheBeam on Twitter

http://beam.incubator.apache.org
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102

Thank you!

