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   Infinite Out-of-Order Data Sets1



 

Goals:

Write interesting 
computations

Run in both batch & 
streaming

Use custom timestamps

Handle late data

https://commons.wikimedia.org/wiki/File:Globe_centered_in_the_Atlantic_Ocean_(green_and_grey_globe_scheme).svg



 

Data...



 

...can be big...



 

...really, really big...

Tuesday
Wednesday

Thursday



 

… maybe infinitely big...

9:008:00 14:0013:0012:0011:0010:002:001:00 7:006:005:004:003:00



 

… with unknown delays.

9:008:00 14:0013:0012:0011:0010:00

8:00

8:008:00



 

1 + 1 = 2
Completeness Latency Cost

$$$

Data Processing Tradeoffs



 

Requirements: Billing Pipeline

Completeness Low Latency Low Cost

Important

Not Important



 

Requirements: Live Cost Estimate Pipeline

Completeness Low Latency Low Cost

Important

Not Important



 

Requirements: Abuse Detection Pipeline

Completeness Low Latency Low Cost

Important

Not Important



 

Requirements: Abuse Detection Backfill Pipeline

Completeness Low Latency Low Cost

Important

Not Important
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(Produce)

MapReduce: Batch Processing

(Prepare)

Map

(Shuffle)

Reduce



 

FlumeJava: Easy and Efficient MapReduce Pipelines

● Higher-level API with simple data 
processing abstractions.
○ Focus on what you want to do to 

your data, not what the 
underlying system supports.

● A graph of transformations is 
automatically transformed into an 
optimized series of MapReduces.



 

MapReduce

Batch Patterns: Creating Structured Data



 

MapReduce

Batch Patterns: Repetitive Runs

Tuesday
Wednesday

Thursday



 

MapReduce

Tuesday [11:00 - 12:00)

[12:00 - 13:00)

[13:00 - 14:00)

[14:00 - 15:00)

[15:00 - 16:00)

[16:00 - 17:00)

[18:00 - 19:00)

[19:00 - 20:00)

[21:00 - 22:00)

[22:00 - 23:00)

[23:00 - 0:00)

Batch Patterns: Time Based Windows



 

MapReduce

TuesdayWednesday

Batch Patterns: Sessions

Jose

Lisa

Ingo

Asha

Cheryl

Ari

WednesdayTuesday



 

MillWheel: Streaming Computations

● Framework for building low-latency 
data-processing applications

● User provides a DAG of 
computations to be performed

● System manages state and 
persistent flow of elements



 

Streaming Patterns: Element-wise transformations

13:00 14:008:00 9:00 10:00 11:00 12:00 Processing 
Time



 

Streaming Patterns: Aggregating Time Based Windows

13:00 14:008:00 9:00 10:00 11:00 12:00 Processing 
Time



 

Streaming Patterns: Event-Time Based Windows

Event Time

Processing 
Time 11:0010:00 15:0014:0013:0012:00

11:0010:00 15:0014:0013:0012:00

Input

Output



 

Streaming Patterns: Session Windows

Event Time

Processing 
Time 11:0010:00 15:0014:0013:0012:00

11:0010:00 15:0014:0013:0012:00

Input

Output



 

Formalizing Event-Time Skew

Watermarks describe event time 
progress.

"No timestamp earlier than the 
watermark will be seen"

Often heuristic-based.

Too Slow? Results are delayed.
Too Fast? Some data is late.



 

Streaming or Batch?

1 + 1 = 2 $$$
Completeness Latency Cost

Why not both?
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What are you computing?

Where in event time?

When in processing time?

How do refinements relate?



 

What are you computing? 

What Where When How

Element-Wise Aggregating Composite



 

What: Computing Integer Sums

// Collection of raw log lines
PCollection<String> raw = IO.read(...);

// Element-wise transformation into team/score pairs

PCollection<KV<String, Integer>> input =

raw.apply(ParDo.of(new ParseFn());

// Composite transformation containing an aggregation
PCollection<KV<String, Integer>> scores = 

input.apply(Sum.integersPerKey());

What Where When How
*All code snippets are pseudo-java -- details shortened or elided for clarity.



 

What: Computing Integer Sums

What Where When How



 

What: Computing Integer Sums

What Where When How



 

Windowing divides data into event-time-based finite chunks.

Often required when doing aggregations over unbounded data.

Where in event time?

What Where When How

Fixed Sliding
1 2 3

54

Sessions

2

431

Key 
2

Key 
1

Key 
3

Time

1 2 3 4



 

Where: Fixed 2-minute Windows

What Where When How

PCollection<KV<String, Integer>> scores = input

   .apply(Window

      .into(FixedWindows.of(Duration.standardMinutes(2)))

   .apply(Sum.integersPerKey());



 

Where: Fixed 2-minute Windows

What Where When How



 

When in processing time?

What Where When How

• Triggers control 
when results are 
emitted.

• Triggers are often 
relative to the 
watermark.



 

When: Triggering at the Watermark

What Where When How

PCollection<KV<String, Integer>> scores = input

   .apply(Window

      .into(FixedWindows.of(Duration.standardMinutes(2))

      .triggering(AtWatermark()))

   .apply(Sum.integersPerKey());



 

When: Triggering at the Watermark

What Where When How



 

When: Early and Late Firings

What Where When How

PCollection<KV<String, Integer>> scores = input

   .apply(Window

      .into(FixedWindows.of(Duration.standardMinutes(2))

      .triggering(AtWatermark()

         .withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))

         .withLateFirings(AtCount(1))))

  .apply(Sum.integersPerKey());



 

When: Early and Late Firings

What Where When How



 

How do refinements relate?

What Where When How

• How should multiple outputs per window 
accumulate?

• Appropriate choice depends on consumer.

Firing Elements

Speculative 3

Watermark 5, 1

Late 2

Total Observ 11

Discarding

3

6

2

11

Accumulating

3

9

11

23

Acc. & Retracting*

3

9, -3

11, -9

11

*Accumulating & Retracting not yet implemented in Apache Beam.



 

How: Add Newest, Remove Previous

What Where When How

PCollection<KV<String, Integer>> scores = input

   .apply(Window

      .into(Sessions.withGapDuration(Duration.standardMinutes(1)))

      .triggering(AtWatermark()

         .withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))

         .withLateFirings(AtCount(1)))

      .accumulatingAndRetractingFiredPanes())

  .apply(Sum.integersPerKey());



 

How: Add Newest, Remove Previous

What Where When How



 

1.Classic Batch 2. Batch with Fixed 
Windows

3. Streaming 5. Streaming With 
Retractions

4. Streaming with 
Speculative + Late Data

Customizing What When Where How

What Where When How
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The Dataflow Model & Cloud Dataflow 

Dataflow Model & SDKs

a unified model for 
batch and stream processing

no-ops, fully managed service

Google Cloud Dataflow



 

a unified model for 
batch and stream processing
 supporting multiple runtimes

a great place to run Beam 

Apache Beam Google Cloud Dataflow

The Dataflow Model & Cloud Dataflow Beam



 

1. The Beam Model: What / Where / When / How

2. SDKs for writing Beam pipelines -- starting with Java

3. Runners for Existing Distributed Processing Backends
• Apache Flink (thanks to data Artisans)
• Apache Spark (thanks to Cloudera)
• Google Cloud Dataflow (fully managed service)
• Local (in-process) runner for testing

What is Part of Apache Beam?



 

1. End users: who want to write 
pipelines in a language that’s 
familiar.

2. SDK writers: who want to make 
Beam concepts available in new 
languages.

3. Runner writers: who have a 
distributed processing 
environment and want to support 
Beam pipelines

Apache Beam Technical Vision

Beam Model: Fn Runners

Runner A Runner B

Beam Model: Pipeline Construction

Other
LanguagesBeam Java Beam 

Python

Execution Execution

Cloud 
Dataflow

Execution



 

Categorizing Runner Capabilities

http://beam.incubator.apache.org/capability-matrix/



 

Collaborate - Beam is becoming a community-
driven effort with participation from many 
organizations and contributors

Grow - We want to grow the Beam ecosystem 
and community with active, open involvement 
so Beam is a part of the larger OSS ecosystem

Growing the Beam Community



 

Apache Beam Roadmap

02/01/2016
Enter Apache 

Incubator

Early 2016
Internal API redesign

Slight Chaos

Mid 2016
API Stabilization

Late 2016
Multiple runners 
execute Beam 

pipelines

02/25/2016
1st commit to 
ASF repository



 

The Evolution of Apache Beam

MapReduce

Google Cloud 
Dataflow

Apache 
Beam

BigTable DremelColossus

FlumeMegastoreSpanner

PubSub

Millwheel



 

Learn More!

Apache Beam (incubating)
http://beam.incubator.apache.org

The World Beyond Batch 101 & 102 
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101  
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102 

Join the Beam mailing lists!  
user-subscribe@beam.incubator.apache.org
dev-subscribe@beam.incubator.apache.org

Follow @ApacheBeam on Twitter

http://beam.incubator.apache.org
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102


 

Thank you!


