
Protecting privacy in
practice

2017-06-13
Lars Albertsson

www.mapflat.com

1

Who’s talking?
● KTH-PDC Center for High Performance Computing (MSc thesis)
● Swedish Institute of Computer Science (distributed system test+debug tools)
● Sun Microsystems (building very large machines)
● Google (Hangouts, productivity)
● Recorded Future (natural language processing startup)
● Cinnober Financial Tech. (trading systems)
● Spotify (data processing & modelling)
● Schibsted Media Group (data processing & modelling)
● Mapflat (independent data engineering consultant)

2

Privacy protection resources

3

All of this might go
wrong. Large fine.

Pour your data into
our product.

404

Privacy-driven design
● Technical scope

○ Toolbox
○ Not complete solutions

● Assuming that you solve:
○ Legal requirements
○ Security primitives
○ ...

● Not description of any company

4

Archi-
tecture

Statis-
tics

Legal

Organi-
sation

Security

Process Privacy UX

Culture

Requirements, engineer’s perspective
● Right to be forgotten
● Limited collection
● Limited retention
● Limited access

○ From employees
○ In case of security breach

● Right for explanations
● User data enumeration
● User data export

5

Ancient data-centric systems
● The monolith
● All data in one place
● Analytics + online serving from

single database
● Current state, mutable

- Please delete me?
- What data have you got on me?

- Sure, no problem!
6

DB

Presentation

Logic

Storage

Event oriented systems

7

Every event All events, ever,
raw, unprocessed

Refinement
pipeline

Artifact of
value

Event oriented systems

8

Every event All events, ever,
raw, unprocessed

Refinement
pipeline

Artifact of
value

● Motivated by
○ New types of data-driven (AI) features
○ Quicker product iterations

■ Data-driven product feedback (A/B tests)
■ Fewer teams involved in changes

○ Robustness - scales to more complex business logic

Enable disruption

v

Service

Data processing at scale

9

Cluster storage

Ingress Offline processing Egress

Data
lake

DB
Service

DatasetJob
Pipeline

Service

Export

Business
intelligence

DB
DB

Import

Workflow manager

10

● Dataset “build tool”
● Run job instance when

○ input is available
○ output missing
○ resources are available

● Backfill for previous failures
● DSL describes DAG

○ Includes ingress & egress

Recommended: Luigi / Airflow

DB

Factors of success

11

● Event-oriented - append only
● Immutability
● At-least-once semantics
● Reproducibility

○ Through 1000s of copies

● Redundancy

- Please delete me?
- What data have you got on me?

- Hold on a second...

Solution space

12

Technical
feasibility

Easy to do
the right thing

Awareness
culture

Personal information (PII) classification
● Red - sensitive data

○ Messages
○ GPS location
○ Views, preferences

● Yellow - personal data
○ IDs (user, device)
○ Name, email, address
○ IP address

● Green - insensitive data
○ Not related to persons
○ Aggregated numbers

13

● Grey zone
○ Birth date, zip code
○ Recommendation / ads models?

Nota bene: This is only an
example classification

PII arithmetics
Red + green = red red + yellow = red yellow + green = yellow

Aggregate(red/yellow) = green ?

Green + green + green = yellow ?

Yellow + yellow + yellow = red ?

Machine_learning_model(yellow) = yellow ?
Overfitting => persons could be identified

14

Make privacy visible at ground level

● In dataset names
○ hdfs://red/crm/received_messages/year=2017/month=6/day=13
○ s3://yellow/webshop/pageviews/year=2017/month=6/day=13

● In field names
○ response.y_text = “Dear ” + user.y_name + “, thanks for contacting us …”

● In credential / service / table / ... names

● Spreads awareness
● Catch mistakes in code review
● Enables custom tooling for violation warnings

15

Eye of the needle tool
● Provide data access through gateway tool

○ Thin wrapper around Spark/Hadoop/S3/...
○ Hard-wired configuration

● Governance
○ Access audit, verification
○ Policing/retention for experiment data

16

Eye of the needle tool
● Easy to do the right thing

○ Right resource choice, e.g. “allocate temporary
cluster/storage”

○ Enforce practices, e.g. run jobs from central
repository code

○ No command for data download

● Enabling for data scientists
○ Empowered without operations
○ Directory of resources

17

Towards oblivion
● Left to its own devices,

personal (PII) data
spreads like weed

● PII data needs to be
governed, collared, or
discarded

○ Discard what you can

18

● Discard all PII
○ User id in example

● No link between records or datasets

● Replace with non-PII
○ E.g. age, gender, country

● Still no link
○ Beware: rare combination => not anonymised

Drop user id

Discard: Anonymisation

19

Replace user id with
demographics

Useful for
business
insights

Useful for
metrics

Partial discard: Pseudonymisation
● Hash PII
● Records are linked

○ Across datasets
○ Still PII, GDPR applies
○ Persons can be identified (with additional data)
○ Hash recoverable from PII

● Hash PII + salt
○ Hash not recoverable

● Records are still linked
○ Across datasets if salt is constant

20

Hash user id Useful for
recommendations

Hash user id
+ salt

Useful for product
insights

● Push reruns with
workflow manager

- No versioning support in tools
- Computationally expensive
- Easy to miss datasets
+ No data model changes required

Governance: Recomputation

21

● Fields reference PII table
● Clear single record => oblivion

- PII table injection needed
- Key with UUID or hash

- Extra join
- Multiple or wide PII tables
+ Small PII leak risk

Ejected record pattern

22

● Datasets are immutable
● Version n+1 of raw dataset lacks record
● Short retention of old versions
● Always depend on latest version

Record removal in pipelines

23

User keys
2017-06-12

User keys
2017-06-13

class Purchases(Task):
 date = DateParameter()

 def requires(self):
 return [Users(self.date),
 Orders(self.date),
 UserKeys.latest()]

● PII fields encrypted
● Per-user decryption key table
● Clear single user key => oblivion

- Extra join + decrypt
- Decryption (user) id needed
+ Multi-field oblivion
+ Small PII leak risk

Lost key pattern

24

● Different fields encrypted
with different keys

● Partial user oblivion
○ E.g. forget my GPS coordinates

Lost key partial oblivion

25

● Encrypt key fields that link datasets
● Ability to join is lost
● No data loss

○ Salt => anonymous data
○ No salt => pseudonymous data

Lost link key

26

Reversible oblivion
● Lost key pattern
● Give ejected record key to

third party
○ User
○ Trusted organisation

● Destroy company copies

27

Data model deadly sins
● Using PII data as key

○ Username, email

● Publishing entity ids containing PII data
○ E.g. user shared resources (favourites, compilations) including username

● Publishing pseudonymised datasets
○ They can be de-pseudonymised with external data
○ E.g. AOL, Netflix, ...

28

Tombstone line
● Produce dataset/stream of

forgotten users
● Egress components, e.g. online

service databases, may need
push for removal.

○ Higher PII leak risk

29

DB Service

The art of deletion
● Example: Cassandra
● Deletions == tombstones
● Data remains

○ Until compaction
○ In disconnected nodes

Component-specific expertise necessary

30

Deletion layers
● Every component adds deletion burden

○ Minimise number of components
○ Ephemeral >> dedicated. Recycle machines.

● Every storage layer adds deletion burden
○ Minimise number of storage layers
○ Cloud storage requires documented erasure semantics + agreements.

● Invent simple strategies
○ Example: Cycle Cassandra machines regularly, erase block devices.

Increasing cost of heterogeneity

31

Retention limitation
● Best solved in workflow manager

○ Connect creation and destruction

● Short default retention, whitelist exceptions
● In conflict with technical ideal of immutable raw data

32

Lake promotion
● Remove expire raw dataset, promote derived datasets to lake
● First derived dataset = washed(raw)?
● Workflow DAG still works

33

Data lake Derived

Cluster storage

Data lake Derived

Cluster storage

Lineage
● Tooling for tracking data flow
● Dataset granularity

○ Workflow manager?

● Field granularity
○ Framework instrumentation?

● Multiple use cases
○ (Discovering data)
○ (Pipeline change management)
○ Detecting dead end data flows
○ Right to export data
○ Explanation of model decisions

34

Solicitation: PII & lineage type systems
● Idea: decorate (scala) types

○ PII classification (red/yellow/green)
○ Lineage (e.g. processing class id + commit id + dataset revision)

● Assistance with PII arithmetics
○ PII[Red, String] + PII[Green, String] => PII[Red, String]
○ PII[Red, Int] + PII[Red, Int] => PII[Green, Int]

● Detect unused PII fields
● Assist with recomputation

○ For PII cleaning
○ Bug fixes

35

Resources Credits
● http://www.slideshare.net/lallea/d

ata-pipelines-from-zero-to-solid
● http://www.mapflat.com/lands/res

ources/reading-list
● https://ico.org.uk/
● EU Article 29 Working Party

36

● Alexander Kjeldaas, independent
● Lena Sundin, Spotify
● Oscar Söderlund, Spotify
● Oskar Löthberg, Spotify
● Sofia Edvardsen,

Sharp Cookie Advisors
● Øyvind Løkling,

Schibsted Media Group

