
A N D R E W C L E G G @ B E R L I N B U Z Z W O R D S 2 0 1 6

LEARNING TO RANK:
WHERE SEARCH MEETS

MACHINE LEARNING

3

1. Background & context

2. Feature engineering

3. Model training with SVMs

4. LTR in production

4

S E C T I O N 1

Background & context

5

“purple hand woven unicorn hair sweater”

hair ➡ 0.25
hand ➡ 0.09

purple ➡ 0.31
sweater ➡ 0.28
unicorn ➡ 0.69
woven ➡ 0.45

How does search relevance work?

} tfidf weights

6

QueryItem

hair ➡ 0.25
hand ➡ 0.09

purple ➡ 0.31
sweater ➡ 0.28
unicorn ➡ 0.69
woven ➡ 0.45

hair ➡ 0.00
hand ➡ 0.00

purple ➡ 2.35
sweater ➡ 1.98
unicorn ➡ 0.00
woven ➡ 0.00
} idf weights

7

QueryItem

hair ➡ 0.25
hand ➡ 0.09

purple ➡ 0.31
sweater ➡ 0.28
unicorn ➡ 0.69
woven ➡ 0.45

hair ➡ 0.00
hand ➡ 0.00

purple ➡ 2.35
sweater ➡ 1.98
unicorn ➡ 0.00
woven ➡ 0.00

cosine
similarity

8

QueryItem

hair ➡ 0.25
hand ➡ 0.09

purple ➡ 0.31
sweater ➡ 0.28
unicorn ➡ 0.69
woven ➡ 0.45

hair ➡ 0.00
hand ➡ 0.00

purple ➡ 2.35
sweater ➡ 1.98
unicorn ➡ 0.00
woven ➡ 0.00

cosine
similarity

Warning: horrible over-simplification!

9

(title_score * 1.5) + (body_score * 1.0) + (comments_score * 0.25)

Documents with multiple fields

10

popularity: score * (num_clicks / num_impressions)

proximity to user: score / haversine_dist

age: score / (now - posting_date)

user favourited item: score * arbitrary_constant

Non-textual boosts…

11

popularity: f(score, num_clicks, num_impressions)

proximity to user: f(score, haversine_dist)

age: f(score, now, posting_date)

user favourited item: f(score, num_user_favourites)

But these functions must still contain scaling constants.

… with some sensible scaling functions

12

f(title_score, body_score, comments_score, num_clicks,
num_impressions, age, haversine_dist,

num_user_favourites, user_favourited_this, …)

Some depend on item, some on query, some on user.

How to combine meaningfully?

How to keep “magic numbers” up-to-date?

How can we combine all these factors?

13

TREAT IT AS A
MACHINE LEARNING

PROBLEM.

14

Each feature has a name and value.

TITLE_hair ➡ 0.25, USER_CLICKED_BEFORE ➡ 1

Weighted sum of feature values gives relevance score.

But where do these weights come from?

Represent each item as a vector of features

15

ModelItem

TITLE_hair ➡ 0.25
TITLE_hand ➡ 0.09

TITLE_purple ➡ 0.31
TITLE_sweater ➡ 0.28

USER_CLICKED ➡ 1.00
AGE_YEARS ➡ 0.10

TITLE_hair ➡ +0.01
TITLE_hand ➡ +0.03

TITLE_purple ➡ +0.14
TITLE_sweater ➡ +0.08

USER_CLICKED ➡ +0.46
AGE_YEARS ➡ –0.12

…

weighted
sum

16

Query: “purple sweater”

ID62858 purple hand-woven unicorn-hair sweater
ID78923 colourless green sweater with furious purple ideas
ID19846 blue sweater decorated with purple figments
ID73956 purple yarn, ideal for making a sweater

Build a target ranking from historical data

17

Query: “purple sweater”

ID62858 ← most clicked = most relevant
ID78923 …
ID19846 …
ID73956 ← least clicked = least relevant

Build a target ranking from historical data

18

Query: “purple sweater”

ID62858 ← predicted ranking is correct
ID19846
ID78923
ID73956 ← predicted ranking is correct

Trainer compares predicted ranking to target

⸘FAIL‽

19

Query: “purple sweater”

ID62858
ID78923
ID19846
ID73956

Tweak weights in direction that improves ranking

Warning: horrible over-simplification!

Rinse and repeat, until
ranking accuracy
stops improving.

20

S E C T I O N 2

Feature engineering

TITLE_blue ➡ 0.24 (or 1.0)
DESC_suede ➡ 0.31 (or 1.0)
TAXO_shoes ➡ 0.16 (or 1.0)

LDA_TOPIC_37 ➡ 0.67
LSI_TOPIC_12 ➡ 0.19

CLICK_RATE ➡ 0.23
CONV_RATE ➡ 0.02

PRICE_QUANTILE ➡ 0.73

DOC_CLUSTER_3 ➡ 1.0
IMG_FEAT_17 ➡ 0.86

Representing items as features

21

Example: “Images Don’t Lie: Transferring
Deep Visual Semantic Features to Large-

Scale Multimodal Learning to Rank”,
Lynch et al., KDD 2016

A model with only item features learns a ‘global’ score.

Easy option: use as modifier for TFIDF relevance.

score = f(ltr_score, lucene_score)

But this takes a step backwards.

How to include query context

22

Modelling <query, item> pairs

23

TITLE_blue ➡ 0.24 (or 1.0)
DESC_suede ➡ 0.31 (or 1.0)
TAXO_shoes ➡ 0.16 (or 1.0)

CLICK_RATE ➡ 0.23
CONV_RATE ➡ 0.02

PRICE_QUANTILE ➡ 0.73

QPOS_nn_adj ➡ 1.0
QCAT_footwear ➡ 1.0
Q_ENTROPY ➡ 5.34

TFIDF_TITLE ➡ 7.86
BM25_DESC ➡ 8.96

Footnote: best to
rescale features
that aren’t in 0-1
range if possible.

QUERY_red:TITLE_scarlet ➡ 1.0

QUERY_red:TITLE_blue ➡ 1.0

Meaning: an item containing “scarlet” or “blue” appeared in
results for a query containing “red”.

“QUERY” could also be “PAGE” or “CONTEXT” or even “USER”.

Explicit query-item interactions

24

Or: train a separate model for each query in your logs.

(Or top-N most common queries.)

Generally works well, assuming plenty of data for each.

Query-specific ranking models

25

26

S E C T I O N 3

Model training with SVMs

27

<email1> ↠ +1

… training instance 1 has been manually tagged as spam.

<email2> ↠ –1

… training instance 2 has been tagged as not-spam.

Imagine we’re classifying spam emails

28

Support Vector Machines for classification

Negative class

Positive class

Dimension 1

Dimension 2

Number of
features in model

= number of
dimensions in
“feature space”

SVM finds best-fit
boundary

between classes
(“max margin”)

29

Support Vector Machines for classification

Dimension 1

Dimension 2

Model weights
define a line

perpendicular to
this boundary

30

Support Vector Machines for ranking?

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20
etc.

Method first presented in
“Optimizing Search Engines
using Clickthrough Data”, T.

Joachims, KDD 2003

31

CONVERT YOUR RANKING
PROBLEM INTO A

CLASSIFICATION PROBLEM
WITH THIS ONE WEIRD TRICK!

32

Each training instance represents a pair of items from
same set of search results in your logs.

<item1, item2>

Learner must learn to order item1 and item2 correctly, with
respect to user preference decisions found in your logs.

Converting to a classification problem

33

<item1, item2> ↠ +1

… if user preferred item1 (the winner) to item2 (the loser).

<item1, item2> ↠ –1

… if user preferred item2 to item1.

Classifiers need a class label

34

<differences_between_item1_and_item2> ↠ +1

… if user preferred item1 to item2.

<differences_between_item1_and_item2> ↠ –1

… if user preferred item2 to item1.

Concentrate on differences between item features

35

Q. WHAT’S THE DIFFERENCE
BETWEEN TWO VECTORS?

A. LITERALLY JUST
SUBTRACTION.

Subtract item2’s features from item1’s

36

item1

TITLE_purple ➡ 1.00
TITLE_sweater ➡ 1.00

TITLE_yarn ➡ 0.00
CLICK_RATE ➡ 0.23
CONV_RATE ➡ 0.02

PRICE_QTILE ➡ 0.73

item2

TITLE_purple ➡ 1.00
TITLE_sweater ➡ 0.00

TITLE_yarn ➡ 1.00
CLICK_RATE ➡ 0.16
CONV_RATE ➡ 0.05

PRICE_QTILE ➡ 0.39

item1_item2_diff

TITLE_purple ➡ +0.00
TITLE_sweater ➡ +1.00

TITLE_yarn ➡ –1.00
CLICK_RATE ➡ +0.07
CONV_RATE ➡ –0.03

PRICE_QTILE ➡ +0.34

Train on these differences

37

item1_item2_diff

TITLE_sweater ➡ +1.00
TITLE_yarn ➡ –1.00

CLICK_RATE ➡ +0.07
CONV_RATE ➡ –0.03

PRICE_QTILE ➡ +0.34

label ↠ +1
} “Please learn that

these feature
differences are
associated with
item1 winning and
item2 losing.”

Train on these differences

38

item1_item2_diff

TITLE_sweater ➡ +1.00
TITLE_yarn ➡ –1.00

CLICK_RATE ➡ +0.07
CONV_RATE ➡ –0.03

PRICE_QTILE ➡ +0.34

label ↠ –1
} “Please learn that

these feature
differences are
associated with
item2 winning and
item1 losing.”

39

Intuition:

Item’s score is positively affected by having features that
are often found in the “winner” of a preference decision.

It’s negatively affected by having features that are often
found in the “loser” of a preference decision.

Apply model to individual items

40

ModelItem

TITLE_hair ➡ 0.25
TITLE_hand ➡ 0.09

TITLE_purple ➡ 0.31
TITLE_sweater ➡ 0.28

USER_CLICKED ➡ 1.00
AGE_YEARS ➡ 0.10

TITLE_hair ➡ +0.01
TITLE_hand ➡ +0.03

TITLE_purple ➡ +0.14
TITLE_sweater ➡ +0.08

USER_CLICKED ➡ +0.46
AGE_YEARS ➡ –0.12

…

weighted
sum

41

Order by this score to reconstruct ranking

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20
etc.

See also: “Large Scale
Learning to Rank”, D.
Sculley, NIPS 2009

Workshop on Advances in
Ranking

42

S E C T I O N 4

LTR in production

43

WHEN AND WHERE
SHOULD YOU CALCULATE
THESE RANKING SCORES?

44

Precomputing them offline is simplest

I tem pairs

Difference vectors

SVM trainer Model

Items

Feature vectors

Model application

Might be unfeasible for all items/all queries

Ranking

45

Dynamic ranking when user runs query

item6258“brunch”
item3946
item8043
item1456
…

model weights

Model is cached in
memory on server

Item features
pulled from search

or DB query

Contextual
features added by
application layer:
same for all items

Item scores
calculated
on-the-fly

46

Get initial result set from simpler method:

e.g. traditional search query.

Then build feature vectors and calculate scores for top
results only. (Top 10, 100, 1000…)

Dynamic top-K reranking

See also “Learning to Rank
in Solr”, Nilsson &

Ceccarelli, Lucene/Solr
Revolution 2015

47

ID1375 rel_score=5.7
ID8682 rel_score=5.2
ID9240 rel_score=5.0
ID4173 rel_score=4.6
ID8364 rel_score=4.1
ID4066 rel_score=3.5
ID9246 rel_score=3.4
…

AfterBefore

ID9240 svm_score=1.0
ID1375 svm_score=0.9
ID8364 svm_score=0.8
ID8682 svm_score=0.7
ID4173 svm_score=0.6
ID4066
ID9246
…

Top-K reranking:
here K=5.

48

SOLVING THE
RIGHT PROBLEM

49

Make sure you’re not just training your model to reinforce
existing rankings.

New content needs to get a look-in.

Option: introduce some level of randomization (carefully).

Option: train on one product, apply on another.

Feedback loops and filter bubbles

50

Option: only consider “losers” that were ranked higher
than lowest click, when constructing training pairs.

Option: include position as a feature in the model, then set
to zero when applying the model.

Option: randomly switch adjacent pairs of search results
to remove bias from training data.

Removing position bias

51

Make sure the target ranking matches your business need.

Ranking by click alone might be fine for ad placement.

In other contexts, consider taking dwell time or conversion
into account. Or, disregard clickbacks and bounces.

A click alone is no guarantee of relevance.

Choosing the right target ranking

52

Article 78169 ← Articles which were often shared
Article 48016
Article 10945 ← Articles which were often read to end
Article 57297
Article 29169
Article 90188 ← Articles which were often clicked
Article 12974
Article 65902

Finer-grained target ranking

53

Further reading

54

Thanks!

TWITTER: @ANDREW_CLEGG

ETSY.COM/CAREERS/

