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LEARNING TO RANK: 
WHERE SEARCH MEETS 

MACHINE LEARNING
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4. LTR in production
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S E C T I O N  1

Background & context
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“purple hand woven unicorn hair sweater”

hair ➡ 0.25
hand ➡ 0.09

purple ➡ 0.31
sweater ➡ 0.28
unicorn ➡ 0.69
woven ➡ 0.45

How does search relevance work?

} tfidf weights



6

QueryItem

hair ➡ 0.25
hand ➡ 0.09

purple ➡ 0.31
sweater ➡ 0.28
unicorn ➡ 0.69
woven ➡ 0.45

hair ➡ 0.00
hand ➡ 0.00

purple ➡ 2.35
sweater ➡ 1.98
unicorn ➡ 0.00
woven ➡ 0.00
} idf weights
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QueryItem

hair ➡ 0.25
hand ➡ 0.09

purple ➡ 0.31
sweater ➡ 0.28
unicorn ➡ 0.69
woven ➡ 0.45

hair ➡ 0.00
hand ➡ 0.00

purple ➡ 2.35
sweater ➡ 1.98
unicorn ➡ 0.00
woven ➡ 0.00

cosine 
similarity
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QueryItem

hair ➡ 0.25
hand ➡ 0.09

purple ➡ 0.31
sweater ➡ 0.28
unicorn ➡ 0.69
woven ➡ 0.45

hair ➡ 0.00
hand ➡ 0.00

purple ➡ 2.35
sweater ➡ 1.98
unicorn ➡ 0.00
woven ➡ 0.00

cosine 
similarity

Warning: horrible over-simplification!
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(title_score * 1.5) + (body_score * 1.0) + (comments_score * 0.25)

Documents with multiple fields
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popularity: score * (num_clicks / num_impressions)

proximity to user: score / haversine_dist

age: score / (now - posting_date)

user favourited item: score * arbitrary_constant

Non-textual boosts…
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popularity: f(score, num_clicks, num_impressions)

proximity to user: f(score, haversine_dist)

age: f(score, now, posting_date)

user favourited item: f(score, num_user_favourites)

But these functions must still contain scaling constants.

… with some sensible scaling functions
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f(title_score, body_score, comments_score, num_clicks, 
num_impressions, age, haversine_dist, 

num_user_favourites, user_favourited_this, …)

Some depend on item, some on query, some on user.

How to combine meaningfully?

How to keep “magic numbers” up-to-date?

How can we combine all these factors?
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TREAT IT AS A 
MACHINE LEARNING 

PROBLEM.
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Each feature has a name and value.

TITLE_hair ➡ 0.25, USER_CLICKED_BEFORE ➡ 1

Weighted sum of feature values gives relevance score.

But where do these weights come from?

Represent each item as a vector of features
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ModelItem

TITLE_hair ➡ 0.25
TITLE_hand ➡ 0.09

TITLE_purple ➡ 0.31
TITLE_sweater ➡ 0.28

USER_CLICKED ➡ 1.00
AGE_YEARS ➡ 0.10

TITLE_hair ➡ +0.01
TITLE_hand ➡ +0.03

TITLE_purple ➡ +0.14
TITLE_sweater ➡ +0.08

USER_CLICKED ➡ +0.46
AGE_YEARS ➡ –0.12

…

weighted 
sum



16

Query: “purple sweater”

ID62858 purple hand-woven unicorn-hair sweater
ID78923 colourless green sweater with furious purple ideas
ID19846 blue sweater decorated with purple figments
ID73956 purple yarn, ideal for making a sweater

Build a target ranking from historical data
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Query: “purple sweater”

ID62858 ← most clicked = most relevant
ID78923 …
ID19846 …
ID73956 ← least clicked = least relevant

Build a target ranking from historical data
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Query: “purple sweater”

ID62858 ← predicted ranking is correct
ID19846
ID78923
ID73956 ← predicted ranking is correct

Trainer compares predicted ranking to target

⸘FAIL‽
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Query: “purple sweater”

ID62858
ID78923
ID19846
ID73956

Tweak weights in direction that improves ranking

Warning: horrible over-simplification!

Rinse and repeat, until 
ranking accuracy 
stops improving.
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S E C T I O N  2

Feature engineering



TITLE_blue ➡ 0.24 (or 1.0)
DESC_suede ➡ 0.31 (or 1.0)
TAXO_shoes ➡ 0.16 (or 1.0)

LDA_TOPIC_37 ➡ 0.67
LSI_TOPIC_12 ➡ 0.19

CLICK_RATE ➡ 0.23
CONV_RATE ➡ 0.02

PRICE_QUANTILE ➡ 0.73

DOC_CLUSTER_3 ➡ 1.0 
IMG_FEAT_17 ➡ 0.86

Representing items as features
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Example: “Images Don’t Lie: Transferring 
Deep Visual Semantic Features to Large-

Scale Multimodal Learning to Rank”, 
Lynch et al., KDD 2016 



A model with only item features learns a ‘global’ score.

Easy option: use as modifier for TFIDF relevance.

score = f(ltr_score, lucene_score)

But this takes a step backwards.

How to include query context
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Modelling <query, item> pairs
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TITLE_blue ➡ 0.24 (or 1.0)
DESC_suede ➡ 0.31 (or 1.0)
TAXO_shoes ➡ 0.16 (or 1.0)

CLICK_RATE ➡ 0.23
CONV_RATE ➡ 0.02

PRICE_QUANTILE ➡ 0.73

QPOS_nn_adj ➡ 1.0
QCAT_footwear ➡ 1.0
Q_ENTROPY ➡ 5.34

TFIDF_TITLE ➡ 7.86
BM25_DESC ➡ 8.96

Footnote: best to 
rescale features 
that aren’t in 0-1 
range if possible.



QUERY_red:TITLE_scarlet ➡ 1.0

QUERY_red:TITLE_blue ➡ 1.0

Meaning: an item containing “scarlet” or “blue” appeared in 
results for a query containing “red”.

“QUERY” could also be “PAGE” or “CONTEXT” or even “USER”.

Explicit query-item interactions
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Or: train a separate model for each query in your logs.

(Or top-N most common queries.)

Generally works well, assuming plenty of data for each.

Query-specific ranking models
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S E C T I O N  3

Model training with SVMs
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<email1> ↠ +1

… training instance 1 has been manually tagged as spam.

<email2> ↠ –1

… training instance 2 has been tagged as not-spam.

Imagine we’re classifying spam emails
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Support Vector Machines for classification

Negative class

Positive class

Dimension 1

Dimension 2

Number of 
features in model 

= number of 
dimensions in 
“feature space”

SVM finds best-fit 
boundary 

between classes 
(“max margin”)
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Support Vector Machines for classification

Dimension 1

Dimension 2

Model weights 
define a line 

perpendicular to 
this boundary
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Support Vector Machines for ranking?

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20
etc.

Method first presented in 
“Optimizing Search Engines 
using Clickthrough Data”, T. 

Joachims, KDD 2003
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CONVERT YOUR RANKING 
PROBLEM INTO A 

CLASSIFICATION PROBLEM 
WITH THIS ONE WEIRD TRICK!



32

Each training instance represents a pair of items from 
same set of search results in your logs.

<item1, item2>

Learner must learn to order item1 and item2 correctly, with 
respect to user preference decisions found in your logs.

Converting to a classification problem
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<item1, item2> ↠ +1

… if user preferred item1 (the winner) to item2 (the loser).

<item1, item2> ↠ –1

… if user preferred item2 to item1.

Classifiers need a class label
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<differences_between_item1_and_item2> ↠ +1

… if user preferred item1 to item2.

<differences_between_item1_and_item2> ↠ –1

… if user preferred item2 to item1.

Concentrate on differences between item features
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Q.  WHAT’S THE DIFFERENCE 
BETWEEN TWO VECTORS?

A. LITERALLY JUST 
SUBTRACTION.



Subtract item2’s features from item1’s
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item1

TITLE_purple ➡ 1.00
TITLE_sweater ➡ 1.00

TITLE_yarn ➡ 0.00
CLICK_RATE ➡ 0.23
CONV_RATE ➡ 0.02

PRICE_QTILE ➡ 0.73

item2

TITLE_purple ➡ 1.00
TITLE_sweater ➡ 0.00

TITLE_yarn ➡ 1.00
CLICK_RATE ➡ 0.16
CONV_RATE ➡ 0.05

PRICE_QTILE ➡ 0.39

item1_item2_diff

TITLE_purple ➡ +0.00
TITLE_sweater ➡ +1.00

TITLE_yarn ➡ –1.00
CLICK_RATE ➡ +0.07
CONV_RATE ➡ –0.03

PRICE_QTILE ➡ +0.34



Train on these differences
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item1_item2_diff

TITLE_sweater ➡ +1.00
TITLE_yarn ➡ –1.00

CLICK_RATE ➡ +0.07
CONV_RATE ➡ –0.03

PRICE_QTILE ➡ +0.34

label ↠ +1
} “Please learn that 

these feature 
differences are 
associated with 
item1 winning and 
item2 losing.”



Train on these differences
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item1_item2_diff

TITLE_sweater ➡ +1.00
TITLE_yarn ➡ –1.00

CLICK_RATE ➡ +0.07
CONV_RATE ➡ –0.03

PRICE_QTILE ➡ +0.34

label ↠ –1
} “Please learn that 

these feature 
differences are 
associated with 
item2 winning and 
item1 losing.”
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Intuition:

Item’s score is positively affected by having features that 
are often found in the “winner” of a preference decision.

It’s negatively affected by having features that are often 
found in the “loser” of a preference decision.

Apply model to individual items
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ModelItem

TITLE_hair ➡ 0.25
TITLE_hand ➡ 0.09

TITLE_purple ➡ 0.31
TITLE_sweater ➡ 0.28

USER_CLICKED ➡ 1.00
AGE_YEARS ➡ 0.10

TITLE_hair ➡ +0.01
TITLE_hand ➡ +0.03

TITLE_purple ➡ +0.14
TITLE_sweater ➡ +0.08

USER_CLICKED ➡ +0.46
AGE_YEARS ➡ –0.12

…

weighted 
sum
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Order by this score to reconstruct ranking

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20
etc.

See also: “Large Scale 
Learning to Rank”, D. 
Sculley, NIPS 2009 

Workshop on Advances in 
Ranking
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S E C T I O N  4

LTR in production
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WHEN AND WHERE 
SHOULD YOU CALCULATE 
THESE RANKING SCORES?
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Precomputing them offline is simplest

I tem pairs

Difference vectors

SVM trainer Model

Items

Feature vectors

Model application

Might be unfeasible for all items/all queries

Ranking
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Dynamic ranking when user runs query

item6258“brunch”
item3946
item8043
item1456
…

model weights

Model is cached in 
memory on server

Item features 
pulled from search 

or DB query

Contextual 
features added by 
application layer: 
same for all items

Item scores 
calculated 
on-the-fly



46

Get initial result set from simpler method:

e.g. traditional search query.

Then build feature vectors and calculate scores for top 
results only. (Top 10, 100, 1000…)

Dynamic top-K reranking

See also “Learning to Rank 
in Solr”, Nilsson & 

Ceccarelli, Lucene/Solr 
Revolution 2015
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ID1375 rel_score=5.7
ID8682 rel_score=5.2
ID9240 rel_score=5.0
ID4173 rel_score=4.6
ID8364 rel_score=4.1
ID4066 rel_score=3.5
ID9246 rel_score=3.4
…

AfterBefore

ID9240 svm_score=1.0
ID1375 svm_score=0.9
ID8364 svm_score=0.8
ID8682 svm_score=0.7
ID4173 svm_score=0.6
ID4066
ID9246
…

Top-K reranking: 
here K=5.
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SOLVING THE 
RIGHT PROBLEM
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Make sure you’re not just training your model to reinforce 
existing rankings.

New content needs to get a look-in.

Option: introduce some level of randomization (carefully).

Option: train on one product, apply on another.

Feedback loops and filter bubbles
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Option: only consider “losers” that were ranked higher 
than lowest click, when constructing training pairs.

Option: include position as a feature in the model, then set 
to zero when applying the model.

Option: randomly switch adjacent pairs of search results 
to remove bias from training data.

Removing position bias
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Make sure the target ranking matches your business need.

Ranking by click alone might be fine for ad placement.

In other contexts, consider taking dwell time or conversion 
into account. Or, disregard clickbacks and bounces.

A click alone is no guarantee of relevance.

Choosing the right target ranking
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Article 78169 ← Articles which were often shared
Article 48016
Article 10945 ← Articles which were often read to end
Article 57297
Article 29169
Article 90188 ← Articles which were often clicked 
Article 12974
Article 65902

Finer-grained target ranking
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Further reading
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Thanks!

TWITTER:  @ANDREW_CLEGG

ETSY.COM/CAREERS/


