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Out of joint
“Time is out of joint. O cursed spite, 
  That ever I was born to set it right.”

- Hamlet, prince of Denmark
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Out of joint
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Free users using 
premium service
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Time will kill us all
● Time handling causes data processing problems

● Observed issues

● Principles, patterns, anti-patterns

Goals:
● Awareness, recognition

● Tools from my toolbox
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Data categories, time angle
● Facts

○ Events, observations
○ Time stamped by clock(s)
○ Continuous stream
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Data categories, time angle
● Facts

○ Events, observations
○ Time stamped by clock(s)
○ Continuous stream

● State
○ Snapshot view of system state
○ Lookup in live system. Dumped to data lake. 
○ Regular intervals (daily)

8



www.mimeria.com

Data categories, time angle
● Facts

○ Events, observations
○ Time stamped by clock(s)
○ Continuous stream

● State
○ Snapshot view of system state
○ Lookup in live system. Dumped to data lake. 
○ Regular intervals (daily)

● Claims
○ Statement about the past
○ Time window scope
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Domain time - scope of claim. “These are suspected fraudulent users for March 2019.”

Time scopes
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Service

Registration time

Event time

Ingest time

Processing time
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Controlled backend - good clocks, UTC

Clocks
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● Computer clocks measure elapsed time

● Good clocks, bad clocks, wrong clocks

Legacy systems - good clocks
Time zone?

Clients - bad clocks
Time zone?
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Calendars, naive
Maps time to astronomical and social domains

Naive calendar
● 365 days + leap years
● 12 months, weird number of days
● 7 day weeks
● 24 hours
● 60 minutes
● 60 seconds
● 24 hour time zones
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Naive calendar properties
t + 1.day == t + 86400.seconds

(y + 45.years).asInt == y.asInt + 45

(date(y, 1, 1) + 364.days).month == 12

(t + 60.minutes).hour == (t.hour + 1) % 24

datetime(y, mon, d, h, m, s, tz).inZone(tz2).day in [d - 1, d, d + 1]

datetime(y, mon, d, h, m, s, tz).inZone(tz2).minute == m

date(y, 12, 29) + 1.day == date(y, 12, 30)

(date(y, 2, 28) + 2.days).month == 3

13

Can you find the counter 
examples?
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Calendar reality
t + 1.day == t + 86400.seconds

(y + 45.years).asInt == y.asInt + 45

(date(y, 1, 1) + 364.days).month == 12

(t + 60.minutes).hour == (t.hour + 1) % 24

datetime(y, mon, d, h, m, s, tz).inZone(tz2).day in [d - 1, d, d + 1]

datetime(y, mon, d, h, m, s, tz).inZone(tz2).minute == m

date(y, 12, 29) + 1.day == date(y, 12, 30)

(date(y, 2, 28) + 2.days).month == 3
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Leap seconds

Year zero

Julian / Gregorian 
calendar switch

Sweden: 1712-02-30

Daylight savings time

Samoa crosses 
date line. Again.

Time zones: 
Span 26 hours
15 minute granularity
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Except DST
● Analytics quality
● Changes with political decision
● Might affect technical systems
● (Affects health!)

Small problems in practice
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Leap seconds

Year zero

Julian / Gregorian 
calendar switch

Sweden: 1712-02-30

Samoa crosses 
date line. Again.

Time zones: 
Span 26 hours
15 minute granularity

Daylight savings time
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Typical loading dock ingress
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● File arrives every hour

● Ingest job copies to lake, 
applies data platform 
conventions

● Source system determines 
format, naming, and

timestamps

class SalesArrived(ExternalTask):
  """Receive a file with sales transactions every hour."""
  hour = DateHourParameter()
  
  def matches(self):
    return [u for u in GCSClient().listdir(f'gs://ingress/sales/')
            if re.match(rf'{self.hour:%Y%m%d%h}.*\.json', u)]

  def output(self):
    return GCSTarget(self.matches()[0])

@requires(SalesArrived)
class SalesIngest(Task):
  def output(self):
    return GCSFlagTarget('gs://lake/sales/'
      f'{self.hour:year=%Y/month=%m/day=%d/hour=%h}/')

  def run(self):
    _, base = self.input().path.rsplit('/', 1)
    dst = f'{self.output().path}{base}'
    self.output().fs.copy(src.path, dst)
    self.output().fs.put_string('', 
      f'{self.output().path}{self.output().flag)}'

crontab:
*/10 * * * * luigi RangeHourly --of SalesIngest
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Typical loading dock ingress
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● File arrives every hour

● Ingest job copies to lake, 
applies data platform 
conventions

● Source system determines 
format, naming, and

timestamps, incl. zone

● Spring: halted ingest
Autumn: data loss

class SalesArrived(ExternalTask):
  """Receive a file with sales transactions every hour."""
  hour = DateHourParameter()
  
  def matches(self):
    return [u for u in GCSClient().listdir(f'gs://ingress/sales/')
            if re.match(rf'{self.hour:%Y%m%d%h}.*\.json', u)]

  def output(self):
    return GCSTarget(self.matches()[0])

@requires(SalesArrived)
class SalesIngest(Task):
  def output(self):
    return GCSFlagTarget('gs://lake/sales/'
      f'{self.hour:year=%Y/month=%m/day=%d/hour=%h}/')

  def run(self):
    _, base = self.input().path.rsplit('/', 1)
    dst = f'{self.output().path}{base}'
    self.output().fs.copy(src.path, dst)
    self.output().fs.put_string('', 
      f'{self.output().path}{self.output().flag)}'

crontab:
*/10 * * * * luigi RangeHourly --of SalesIngest
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Offline:

Processing time != event time

Online:

Processing time ~= event time

Offline / online

18

Service

DB

DB

Service
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Job == function([input datasets]): [output datasets]
● Ideally: atomic, deterministic, idempotent
● No external factors → deterministic

○ No (mutable) database queries
○ No service lookup
○ Don't read wall clock
○ No random numbers

● Known, bounded input data
● No orthogonal concerns & input factors

○ Invocation
○ Scheduling
○ Input / output location

● No side-effects

Batch job - functional principles

19

q

DB Service
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● Simple approach: Daily full table snapshot to cluster storage dataset.
● Easy on surface...

Database dumping

20

Service

DB

DB

Service ?
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● Sqoop (dump with MapReduce) production DB
● MapReduce from production API

Hadoop / Spark == internal DDoS service
 

Anti-pattern: Death by elephant

21

Service

DB

DB

Service
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● Restore backup to offline replica
● Dump from replica

Pattern: Offline replica
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DB

Service

backup
snapshot

Restore

DB
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Using snapshots

● join(event, snapshot) → always time mismatch

● Usually acceptable
○ In one direction

23

DB’DB
join?
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Using snapshots

● join(event, snapshot) → always time mismatch

● Usually acceptable
○ In one direction
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DB’DB
join?

Free users using 
premium service
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● Time mismatch in both directions

Window misalign

25

DB
join
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Event sourcing

● Every change to unified log == source of truth

● snapshot(t + 1) = sum(snapshot(t), events(t, t+1))

● Allows view & join at any point in time
○ But more complex

26

DB’DB
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Easier to express with streaming?
state + event → state'

● State is a view of sum of all events
○ Join with the sum table
○ Beautiful!
○ Not simple in practice

● Mixing event time and processing time
○ Every join is a race condition

27

Stream

Stream

Stream

Stream
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Stream window operations
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Stream

Stream

Stream

Stream

Sliding windows

Tumbling 
windows

Stream

Stream

Stream

Window 
join
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Window over what?
● Number of events

● Processing time

● Registration time

● Event time
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Less relevant for domain
Deterministic 
Predictable semantics
Predictable resources

More relevant for domain
Deterministic
Unpredictable semantics
Unpredictable resources

Less relevant for domain
Indeterministic 
Unpredictable semantics
Predictable resources
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Batch is easier?
● Yes
● But, some pitfalls

Event ingest

30

How to divide events 
to datasets? 

When to start 
processing?
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Ancient data collection:
● Events in log files, partitioned hourly
● Copy each hour of every host to lake

Anti-pattern: Bucket by registration time

31

Service

All hosts 
represented?
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● Start processing optimistically
● Reprocess after x% new data has arrived

Anti-pattern: Reprocess
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● Start processing optimistically
● Reprocess after x% new data has arrived

Solution space:
● Apache Beam / Google → stream processing ops
● Data versioning
● Provenance

Requires good (lacking) tooling

Supporting reprocessing
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Event collection

34

Service

Registration time

Event time

Ingest time

Processing time
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● Bundle incoming events into datasets
○ Bucket on ingest / wall-clock time
○ Predictable bucketing, e.g. hour

Pattern: Ingest time bucketing
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clicks/2016/02/08/14

clicks/2016/02/08/15

● Sealed quickly at end of hour
● Mark dataset as complete

○ E.g. _SUCCESS flag



www.mimeria.com

When data is late

36
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val orderLateCounter = longAccumulator("order-event-late")

val hourPaths = conf.order.split(",")
val order = hourPaths
  .map(spark.read.avro(_))
  .reduce(a, b => a.union(b))

val orderThisHour = order
  .map({ cl =>
    # Count the events that came after the delay window
    if (cl.eventTime.hour + config.delayHours <
        config.hour) {
      orderLateCounter.add(1)
    }
    order
  })
  .filter(cl => cl.eventTime.hour == config.hour)

class OrderShuffle(SparkSubmitTask):
  hour = DateHourParameter()
  delay_hours = IntParameter()
  
  jar = 'orderpipeline.jar'
  entry_class = 'com.example.shop.OrderShuffleJob'

  def requires(self):
    # Note: This delays processing by N hours.
    return [Order(hour=hour) for hour in
      [self.hour + timedelta(hour=h) for h in
       range(self.delay_hours)]]

  def output(self):
    return HdfsTarget("/prod/red/order/v1/"
      f"delay={self.delay}/"
      f"{self.hour:%Y/%m/%d/%H}/")

  def app_options(self):
    return [ "--hour", self.hour,
            "--delay-hours", self.delay_hours,
            "--order", 
            ",".join([i.path for i in self.input()]),
            "--output", self.output().path]
  

Incompleteness recovery
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class OrderShuffleAll(WrapperTask):
  hour = DateHourParameter()

  def requires(self):
    return [OrderShuffle(hour=self.hour, delay_hour=d) 
            for d in [0, 4, 12]]

class OrderDashboard(mysql.CopyToTable):
  hour = DateHourParameter()

  def requires(self):
    return OrderShuffle(hour=self.hour, delay_hour=0)

class FinancialReport(SparkSubmitTask):
  date = DateParameter()

  def requires(self):
    return [OrderShuffle(
            hour=datetime.combine(self.date, time(hours=h)),
            delay_hour=12)
            for h in range(24)]

Fast data, complete data
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Delay: 0

Delay: 4

Delay: 12
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class ReportBase(SparkSubmitTask):
  date = DateParameter()

  jar = 'reportpipeline.jar'
  entry_class = 'com.example.shop.ReportJob'

  def requires(self):
    return [OrderShuffle(
            hour=datetime.combine(self.date, time(hour=h)),
            delay_hour=self.delay)
            for h in range(24)]
     

class PreliminaryReport(ReportBase):
  delay = 0

class FinalReport(ReportBase):
  delay = 12

  def requires(self):
    return super().requires() + [SuspectedFraud(self.date)]

Lambda in batch
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Human-delayed data
“These are my compensation claims for last January.”

● Want: accurate reporting
● Want: current report status

Anti-pattern: Reprocessing

40
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class ClaimsReport(SparkSubmitTask):
  domain_month = MonthParameter()
  date = DateParameter()

  jar = 'reportpipeline.jar'
  entry_class = 'com.example.shop.ClaimsReportJob'

  def requires(self):
    return [Claims(
            domain_month=self.domain_month,

     date=d)
            for date in date_range(

self.domain_month + timedelta(month=1),
self.date)]

Dual time scopes

41

● What we knew about month X at date Y

● Deterministic
○ Can be backfilled, audited

● May require sparse dependency trees
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Recursive dependencies
● Use yesterday’s dataset + some delta

○ Starting point necessary

● Often convenient, but operational risk
○ Slow backfills

● Mitigation: recursive jumps
○ Depend on previous month + all previous days 

in this month

42

class StockAggregateJob(SparkSubmitTask):
  date = DateParameter()

  jar = 'stockpipeline.jar'
  entry_class = 'com.example.shop.StockAggregate'

  def requires(self):
    yesterday = self.date - timedelta(days=1)
    previous = StockAggregateJob( date=yesterday)
    return [StockUpdate(date=self.date), previous]
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Recursive dependency strides
● Mitigation: recursive strides
● y/m/1 depends on y/m-1/1
● Others depend on y/m/1 + all previous 

days in this month

43

class StockAggregateStrideJob(SparkSubmitTask):
  date = DateParameter()

  jar = 'stockpipeline.jar'
  entry_class = 'com.example.shop.StockAggregate'

  def requires(self):
    first_in_month = self.date.replace(day=1)
    base = first_in_month - relativedelta(months=1) \
      if self.date.day == 1 else first_in_month
    return ([StockAggregateStrideJob(date=base)] +
            [StockUpdate(date=d) for d in 
            rrule(freq=DAILY, dtstart=base, until=self.date)])
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Business logic with history
Example: Forming sessions

● Valuable for
○ User insights
○ Product insights
○ A/B testing
○ ...

44
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What is a session?
● Sequence of clicks at most 5 minutes 

apart?
● In order to emit sessions in one hour, 

which hours of clicks are needed?
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What is a session?
● Sequence of clicks at most 5 minutes 

apart?
● Maximum length 3 hours?

● In order to emit sessions in one hour, 
which hours of clicks are needed?
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What is a session?
● Sequence of clicks at most 5 minutes 

apart.
● Maximum length 3 hours.

Examples, window = 5am - 9am:
● Clicks at [6:00, 6:01, 6:03, 6:45, 6:47]?

○ Two sessions, 3 and 2 minutes long.
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What is a session?
● Sequence of clicks at most 5 minutes 

apart.
● Maximum length 3 hours.

Examples, window = 5am - 9am:
● Clicks at [6:00, 6:01, 6:03, 6:45, 6:47]?

○ Two sessions, 3 and 2 minutes long.
● [5:00, 5:01, 5:03]?

○ One session, 3 minutes?
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What is a session?
● Sequence of clicks at most 5 minutes 

apart.
● Maximum length 3 hours.

Examples, window = 5am - 9am:
● Clicks at [6:00, 6:01, 6:03, 6:45, 6:47]?

○ Two sessions, 3 and 2 minutes long.
● [5:00, 5:01, 5:03]?

○ One session, 3 minutes?
○ [(4:57), 5:00, 5:01, 5:03]?
○ [(2:01), (every 3 minutes), (4:57), 5:00, 

5:01, 5:03]?
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Occurrences with unbounded time spans
● E.g. sessions, behavioural patterns

● You often need a broader time range than expected

● You may need data from the future

● You may need infinite history
○ Recursive strides?
○ Introduce static limits, e.g. cut all sessions at midnight?
○ Emit counters to monitor assumptions.
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Secrets of valuable data engineering
1. Avoid complexity and distributed systems 

○ Your data fits in one machine.

2. Pick the slowest data integration you can live with 
○ Batch >> streaming >> service.
○ Slow data → easy operations → high innovation speed

3. Functional architectural principles
○ Pipelines
○ Immutability
○ Reproducibility
○ Idempotency

4. Master workflow orchestration
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Team concurrency
● Pipelines

○ Parallel development without risk

● Immutability
○ Data reusability without risk

● Reproducibility, idempotency
○ Preserving immutability
○ Reduces operational risk
○ Stable experiments

● Workflow orchestration
○ Data handover between systems & teams
○ Reduces operational overhead

52

Data science 
reproducibility crisis!
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The real value of big data

53

Stream storage

Data lake

Data 
democratised
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Resources, credits
Time libraries:

● Java: Joda time java.time

● Scala: chronoscala

● Python: dateutil, pendulum

Presentation on operational tradeoffs:

https://www.slideshare.net/lallea/data-ops-in-practice
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Thank you, 

● Konstantinos Chaidos, Spotify

● Lena Sundin, independent

https://www.slideshare.net/lallea/data-ops-in-practice
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Laptop sticker
Vintage data visualisations, by Karin Lind.

● Charles Minard: Napoleon’s Russian campaign of 1812. Drawn 1869.

● Matthew F Maury: Wind and Current Chart of the North Atlantic. Drawn 1852.

● Florence Nightingale: Causes of Mortality in the Army of the East. Crimean
war, 1854-1856. Drawn 1858.

○ Blue = disease, red = wounds, black = battle + other.

● Harold Craft: Radio Observations of the Pulse Profiles and Dispersion 
Measures of Twelve Pulsars, 1970

○ Joy Division: 
Unknown Pleasures, 1979

○ “Joy plot” → “ridge plot”
55


