
www.mimeria.com

Eventually, time will kill your
data pipeline

Berlin Buzzwords, 2019-06-17
Lars Albertsson

Mimeria
1

www.mimeria.com

Out of joint
“Time is out of joint. O cursed spite,
 That ever I was born to set it right.”

- Hamlet, prince of Denmark

2

www.mimeria.com

Out of joint
“Time is out of joint. O cursed spite,
 That ever I was born to set it right.”

- Hamlet, prince of Denmark

3

www.mimeria.com

Out of joint
“Time is out of joint. O cursed spite,
 That ever I was born to set it right.”

- Hamlet, prince of Denmark

4

www.mimeria.com

Out of joint

5

Free users using
premium service

www.mimeria.com

Time will kill us all
● Time handling causes data processing problems

● Observed issues

● Principles, patterns, anti-patterns

Goals:
● Awareness, recognition

● Tools from my toolbox

6

www.mimeria.com

Data categories, time angle
● Facts

○ Events, observations
○ Time stamped by clock(s)
○ Continuous stream

7

www.mimeria.com

Data categories, time angle
● Facts

○ Events, observations
○ Time stamped by clock(s)
○ Continuous stream

● State
○ Snapshot view of system state
○ Lookup in live system. Dumped to data lake.
○ Regular intervals (daily)

8

www.mimeria.com

Data categories, time angle
● Facts

○ Events, observations
○ Time stamped by clock(s)
○ Continuous stream

● State
○ Snapshot view of system state
○ Lookup in live system. Dumped to data lake.
○ Regular intervals (daily)

● Claims
○ Statement about the past
○ Time window scope

9

www.mimeria.com

Domain time - scope of claim. “These are suspected fraudulent users for March 2019.”

Time scopes

10

Service

Registration time

Event time

Ingest time

Processing time

www.mimeria.com

Controlled backend - good clocks, UTC

Clocks

11

● Computer clocks measure elapsed time

● Good clocks, bad clocks, wrong clocks

Legacy systems - good clocks
Time zone?

Clients - bad clocks
Time zone?

www.mimeria.com

Calendars, naive
Maps time to astronomical and social domains

Naive calendar
● 365 days + leap years
● 12 months, weird number of days
● 7 day weeks
● 24 hours
● 60 minutes
● 60 seconds
● 24 hour time zones

12

www.mimeria.com

Naive calendar properties
t + 1.day == t + 86400.seconds

(y + 45.years).asInt == y.asInt + 45

(date(y, 1, 1) + 364.days).month == 12

(t + 60.minutes).hour == (t.hour + 1) % 24

datetime(y, mon, d, h, m, s, tz).inZone(tz2).day in [d - 1, d, d + 1]

datetime(y, mon, d, h, m, s, tz).inZone(tz2).minute == m

date(y, 12, 29) + 1.day == date(y, 12, 30)

(date(y, 2, 28) + 2.days).month == 3

13

Can you find the counter
examples?

www.mimeria.com

Calendar reality
t + 1.day == t + 86400.seconds

(y + 45.years).asInt == y.asInt + 45

(date(y, 1, 1) + 364.days).month == 12

(t + 60.minutes).hour == (t.hour + 1) % 24

datetime(y, mon, d, h, m, s, tz).inZone(tz2).day in [d - 1, d, d + 1]

datetime(y, mon, d, h, m, s, tz).inZone(tz2).minute == m

date(y, 12, 29) + 1.day == date(y, 12, 30)

(date(y, 2, 28) + 2.days).month == 3

14

Leap seconds

Year zero

Julian / Gregorian
calendar switch

Sweden: 1712-02-30

Daylight savings time

Samoa crosses
date line. Again.

Time zones:
Span 26 hours
15 minute granularity

www.mimeria.com

Except DST
● Analytics quality
● Changes with political decision
● Might affect technical systems
● (Affects health!)

Small problems in practice

15

Leap seconds

Year zero

Julian / Gregorian
calendar switch

Sweden: 1712-02-30

Samoa crosses
date line. Again.

Time zones:
Span 26 hours
15 minute granularity

Daylight savings time

www.mimeria.com

Typical loading dock ingress

16

● File arrives every hour

● Ingest job copies to lake,
applies data platform
conventions

● Source system determines
format, naming, and

timestamps

class SalesArrived(ExternalTask):
 """Receive a file with sales transactions every hour."""
 hour = DateHourParameter()

 def matches(self):
 return [u for u in GCSClient().listdir(f'gs://ingress/sales/')
 if re.match(rf'{self.hour:%Y%m%d%h}.*\.json', u)]

 def output(self):
 return GCSTarget(self.matches()[0])

@requires(SalesArrived)
class SalesIngest(Task):
 def output(self):
 return GCSFlagTarget('gs://lake/sales/'
 f'{self.hour:year=%Y/month=%m/day=%d/hour=%h}/')

 def run(self):
 _, base = self.input().path.rsplit('/', 1)
 dst = f'{self.output().path}{base}'
 self.output().fs.copy(src.path, dst)
 self.output().fs.put_string('',
 f'{self.output().path}{self.output().flag)}'

crontab:
*/10 * * * * luigi RangeHourly --of SalesIngest

www.mimeria.com

Typical loading dock ingress

17

● File arrives every hour

● Ingest job copies to lake,
applies data platform
conventions

● Source system determines
format, naming, and

timestamps, incl. zone

● Spring: halted ingest
Autumn: data loss

class SalesArrived(ExternalTask):
 """Receive a file with sales transactions every hour."""
 hour = DateHourParameter()

 def matches(self):
 return [u for u in GCSClient().listdir(f'gs://ingress/sales/')
 if re.match(rf'{self.hour:%Y%m%d%h}.*\.json', u)]

 def output(self):
 return GCSTarget(self.matches()[0])

@requires(SalesArrived)
class SalesIngest(Task):
 def output(self):
 return GCSFlagTarget('gs://lake/sales/'
 f'{self.hour:year=%Y/month=%m/day=%d/hour=%h}/')

 def run(self):
 _, base = self.input().path.rsplit('/', 1)
 dst = f'{self.output().path}{base}'
 self.output().fs.copy(src.path, dst)
 self.output().fs.put_string('',
 f'{self.output().path}{self.output().flag)}'

crontab:
*/10 * * * * luigi RangeHourly --of SalesIngest

www.mimeria.com

Offline:

Processing time != event time

Online:

Processing time ~= event time

Offline / online

18

Service

DB

DB

Service

www.mimeria.com

Job == function([input datasets]): [output datasets]
● Ideally: atomic, deterministic, idempotent
● No external factors → deterministic

○ No (mutable) database queries
○ No service lookup
○ Don't read wall clock
○ No random numbers

● Known, bounded input data
● No orthogonal concerns & input factors

○ Invocation
○ Scheduling
○ Input / output location

● No side-effects

Batch job - functional principles

19

q

DB Service

www.mimeria.com

● Simple approach: Daily full table snapshot to cluster storage dataset.
● Easy on surface...

Database dumping

20

Service

DB

DB

Service ?

www.mimeria.com

● Sqoop (dump with MapReduce) production DB
● MapReduce from production API

Hadoop / Spark == internal DDoS service

Anti-pattern: Death by elephant

21

Service

DB

DB

Service

www.mimeria.com

● Restore backup to offline replica
● Dump from replica

Pattern: Offline replica

22

DB

Service

backup
snapshot

Restore

DB

www.mimeria.com

Using snapshots

● join(event, snapshot) → always time mismatch

● Usually acceptable
○ In one direction

23

DB’DB
join?

www.mimeria.com

Using snapshots

● join(event, snapshot) → always time mismatch

● Usually acceptable
○ In one direction

24

DB’DB
join?

Free users using
premium service

www.mimeria.com

● Time mismatch in both directions

Window misalign

25

DB
join

www.mimeria.com

Event sourcing

● Every change to unified log == source of truth

● snapshot(t + 1) = sum(snapshot(t), events(t, t+1))

● Allows view & join at any point in time
○ But more complex

26

DB’DB

www.mimeria.com

Easier to express with streaming?
state + event → state'

● State is a view of sum of all events
○ Join with the sum table
○ Beautiful!
○ Not simple in practice

● Mixing event time and processing time
○ Every join is a race condition

27

Stream

Stream

Stream

Stream

www.mimeria.com

Stream window operations

28

Stream

Stream

Stream

Stream

Sliding windows

Tumbling
windows

Stream

Stream

Stream

Window
join

www.mimeria.com

Window over what?
● Number of events

● Processing time

● Registration time

● Event time

29

Less relevant for domain
Deterministic
Predictable semantics
Predictable resources

More relevant for domain
Deterministic
Unpredictable semantics
Unpredictable resources

Less relevant for domain
Indeterministic
Unpredictable semantics
Predictable resources

www.mimeria.com

Batch is easier?
● Yes
● But, some pitfalls

Event ingest

30

How to divide events
to datasets?

When to start
processing?

www.mimeria.com

Ancient data collection:
● Events in log files, partitioned hourly
● Copy each hour of every host to lake

Anti-pattern: Bucket by registration time

31

Service

All hosts
represented?

www.mimeria.com

● Start processing optimistically
● Reprocess after x% new data has arrived

Anti-pattern: Reprocess

32

www.mimeria.com

● Start processing optimistically
● Reprocess after x% new data has arrived

Solution space:
● Apache Beam / Google → stream processing ops
● Data versioning
● Provenance

Requires good (lacking) tooling

Supporting reprocessing

33

www.mimeria.com

Event collection

34

Service

Registration time

Event time

Ingest time

Processing time

www.mimeria.com

● Bundle incoming events into datasets
○ Bucket on ingest / wall-clock time
○ Predictable bucketing, e.g. hour

Pattern: Ingest time bucketing

35

clicks/2016/02/08/14

clicks/2016/02/08/15

● Sealed quickly at end of hour
● Mark dataset as complete

○ E.g. _SUCCESS flag

www.mimeria.com

When data is late

36

or

www.mimeria.com

val orderLateCounter = longAccumulator("order-event-late")

val hourPaths = conf.order.split(",")
val order = hourPaths
 .map(spark.read.avro(_))
 .reduce(a, b => a.union(b))

val orderThisHour = order
 .map({ cl =>
 # Count the events that came after the delay window
 if (cl.eventTime.hour + config.delayHours <
 config.hour) {
 orderLateCounter.add(1)
 }
 order
 })
 .filter(cl => cl.eventTime.hour == config.hour)

class OrderShuffle(SparkSubmitTask):
 hour = DateHourParameter()
 delay_hours = IntParameter()

 jar = 'orderpipeline.jar'
 entry_class = 'com.example.shop.OrderShuffleJob'

 def requires(self):
 # Note: This delays processing by N hours.
 return [Order(hour=hour) for hour in
 [self.hour + timedelta(hour=h) for h in
 range(self.delay_hours)]]

 def output(self):
 return HdfsTarget("/prod/red/order/v1/"
 f"delay={self.delay}/"
 f"{self.hour:%Y/%m/%d/%H}/")

 def app_options(self):
 return ["--hour", self.hour,
 "--delay-hours", self.delay_hours,
 "--order",
 ",".join([i.path for i in self.input()]),
 "--output", self.output().path]

Incompleteness recovery

37

www.mimeria.com

class OrderShuffleAll(WrapperTask):
 hour = DateHourParameter()

 def requires(self):
 return [OrderShuffle(hour=self.hour, delay_hour=d)
 for d in [0, 4, 12]]

class OrderDashboard(mysql.CopyToTable):
 hour = DateHourParameter()

 def requires(self):
 return OrderShuffle(hour=self.hour, delay_hour=0)

class FinancialReport(SparkSubmitTask):
 date = DateParameter()

 def requires(self):
 return [OrderShuffle(
 hour=datetime.combine(self.date, time(hours=h)),
 delay_hour=12)
 for h in range(24)]

Fast data, complete data

38

Delay: 0

Delay: 4

Delay: 12

www.mimeria.com

class ReportBase(SparkSubmitTask):
 date = DateParameter()

 jar = 'reportpipeline.jar'
 entry_class = 'com.example.shop.ReportJob'

 def requires(self):
 return [OrderShuffle(
 hour=datetime.combine(self.date, time(hour=h)),
 delay_hour=self.delay)
 for h in range(24)]

class PreliminaryReport(ReportBase):
 delay = 0

class FinalReport(ReportBase):
 delay = 12

 def requires(self):
 return super().requires() + [SuspectedFraud(self.date)]

Lambda in batch

39

www.mimeria.com

Human-delayed data
“These are my compensation claims for last January.”

● Want: accurate reporting
● Want: current report status

Anti-pattern: Reprocessing

40

www.mimeria.com

class ClaimsReport(SparkSubmitTask):
 domain_month = MonthParameter()
 date = DateParameter()

 jar = 'reportpipeline.jar'
 entry_class = 'com.example.shop.ClaimsReportJob'

 def requires(self):
 return [Claims(
 domain_month=self.domain_month,

 date=d)
 for date in date_range(

self.domain_month + timedelta(month=1),
self.date)]

Dual time scopes

41

● What we knew about month X at date Y

● Deterministic
○ Can be backfilled, audited

● May require sparse dependency trees

www.mimeria.com

Recursive dependencies
● Use yesterday’s dataset + some delta

○ Starting point necessary

● Often convenient, but operational risk
○ Slow backfills

● Mitigation: recursive jumps
○ Depend on previous month + all previous days

in this month

42

class StockAggregateJob(SparkSubmitTask):
 date = DateParameter()

 jar = 'stockpipeline.jar'
 entry_class = 'com.example.shop.StockAggregate'

 def requires(self):
 yesterday = self.date - timedelta(days=1)
 previous = StockAggregateJob(date=yesterday)
 return [StockUpdate(date=self.date), previous]

www.mimeria.com

Recursive dependency strides
● Mitigation: recursive strides
● y/m/1 depends on y/m-1/1
● Others depend on y/m/1 + all previous

days in this month

43

class StockAggregateStrideJob(SparkSubmitTask):
 date = DateParameter()

 jar = 'stockpipeline.jar'
 entry_class = 'com.example.shop.StockAggregate'

 def requires(self):
 first_in_month = self.date.replace(day=1)
 base = first_in_month - relativedelta(months=1) \
 if self.date.day == 1 else first_in_month
 return ([StockAggregateStrideJob(date=base)] +
 [StockUpdate(date=d) for d in
 rrule(freq=DAILY, dtstart=base, until=self.date)])

www.mimeria.com

Business logic with history
Example: Forming sessions

● Valuable for
○ User insights
○ Product insights
○ A/B testing
○ ...

44

www.mimeria.com

What is a session?
● Sequence of clicks at most 5 minutes

apart?
● In order to emit sessions in one hour,

which hours of clicks are needed?

45

www.mimeria.com

What is a session?
● Sequence of clicks at most 5 minutes

apart?
● Maximum length 3 hours?

● In order to emit sessions in one hour,
which hours of clicks are needed?

46

www.mimeria.com

What is a session?
● Sequence of clicks at most 5 minutes

apart.
● Maximum length 3 hours.

Examples, window = 5am - 9am:
● Clicks at [6:00, 6:01, 6:03, 6:45, 6:47]?

○ Two sessions, 3 and 2 minutes long.

47

www.mimeria.com

What is a session?
● Sequence of clicks at most 5 minutes

apart.
● Maximum length 3 hours.

Examples, window = 5am - 9am:
● Clicks at [6:00, 6:01, 6:03, 6:45, 6:47]?

○ Two sessions, 3 and 2 minutes long.
● [5:00, 5:01, 5:03]?

○ One session, 3 minutes?

48

www.mimeria.com

What is a session?
● Sequence of clicks at most 5 minutes

apart.
● Maximum length 3 hours.

Examples, window = 5am - 9am:
● Clicks at [6:00, 6:01, 6:03, 6:45, 6:47]?

○ Two sessions, 3 and 2 minutes long.
● [5:00, 5:01, 5:03]?

○ One session, 3 minutes?
○ [(4:57), 5:00, 5:01, 5:03]?
○ [(2:01), (every 3 minutes), (4:57), 5:00,

5:01, 5:03]?

49

www.mimeria.com

Occurrences with unbounded time spans
● E.g. sessions, behavioural patterns

● You often need a broader time range than expected

● You may need data from the future

● You may need infinite history
○ Recursive strides?
○ Introduce static limits, e.g. cut all sessions at midnight?
○ Emit counters to monitor assumptions.

50

www.mimeria.com

Secrets of valuable data engineering
1. Avoid complexity and distributed systems

○ Your data fits in one machine.

2. Pick the slowest data integration you can live with
○ Batch >> streaming >> service.
○ Slow data → easy operations → high innovation speed

3. Functional architectural principles
○ Pipelines
○ Immutability
○ Reproducibility
○ Idempotency

4. Master workflow orchestration

51

www.mimeria.com

Team concurrency
● Pipelines

○ Parallel development without risk

● Immutability
○ Data reusability without risk

● Reproducibility, idempotency
○ Preserving immutability
○ Reduces operational risk
○ Stable experiments

● Workflow orchestration
○ Data handover between systems & teams
○ Reduces operational overhead

52

Data science
reproducibility crisis!

www.mimeria.com

The real value of big data

53

Stream storage

Data lake

Data
democratised

www.mimeria.com

Resources, credits
Time libraries:

● Java: Joda time java.time

● Scala: chronoscala

● Python: dateutil, pendulum

Presentation on operational tradeoffs:

https://www.slideshare.net/lallea/data-ops-in-practice

54

Thank you,

● Konstantinos Chaidos, Spotify

● Lena Sundin, independent

https://www.slideshare.net/lallea/data-ops-in-practice

www.mimeria.com

Laptop sticker
Vintage data visualisations, by Karin Lind.

● Charles Minard: Napoleon’s Russian campaign of 1812. Drawn 1869.

● Matthew F Maury: Wind and Current Chart of the North Atlantic. Drawn 1852.

● Florence Nightingale: Causes of Mortality in the Army of the East. Crimean
war, 1854-1856. Drawn 1858.

○ Blue = disease, red = wounds, black = battle + other.

● Harold Craft: Radio Observations of the Pulse Profiles and Dispersion
Measures of Twelve Pulsars, 1970

○ Joy Division:
Unknown Pleasures, 1979

○ “Joy plot” → “ridge plot”
55

