

Hops in the Cloud

 $\bullet \bullet \bullet$

Jim Dowling, CEO at Logical Clocks @jim_dowling

Brief History of Hops

World's fastest HDFS 16X increase in throughput on Spotify workload (USENIX FAST)

2017

World's First GPUs-as-a-Resource support in a Hadoop platform World's First Open Source Feature Store for Machine Learning

Winner of IEEE Scale Challenge 2017 with HopsFS - 1.2m ops/sec World's First Hierarchical File System to store small files in metadata on NVMe disks World's First Hierarchical Filesystem with Multi Data Center High Availability

2019

"If you're working with big data and Hadoop, **this one paper could repay your investment** in the Morning Paper many times over.... **HopsFS is a huge win.**" - Adrian Colyer, The Morning Paper

2018

Quick overview of Hops/Hopsworks

The **only** open-source data platform to support:

- Project-based multi-tenancy
- On-premise resource management of GPUs (>1 server)
- Per-Project Python Dependencies with Conda
- Feature Store
- Jupyter notebooks as Jobs (Airflow)
- Free-text search for files/dirs in the filesystem
- NVMe to store small files in filesystem metadata

Example workflow in Hopsworks at Scale

- 1. Insert 1m images (<100kb) in seconds
- 2. Train a DNN classifier using 100s of GPUs
- 3. Run a Spark job to identify all objects in the 1m images and add the image annotations (JSON) as extended metadata to HopsFS
- 4. "show me the images with >3 bicycles" and get a sub-second response.

<u>Ops folks</u>: Remove the image directory, and elasticsearch is auto-cleaned up! <u>Data scientists</u>: Do it all in Jupyter notebooks and Python (if you want)!

The Future is Cloud-Native...but what about the FS?

Kubernetes

Does it have to be S3?

What will the Cloud-Native Filesystem be?

A Brief History of Data

MapReduce v0.01-alpha

IBM 082 Punch Card Sorter Scan -> Sort -> Scan -> Sort

First DBMS' and Filesystems were Disk Aware

Early Filesystems' block size was tightly coupled to the sector size of a disk

Hierarchical and Network DB Systems

You had to know what you want, and how to find it on disk.

Codd's Relational Model and SystemR

+30 years..Data Volumes outgrew Relational DBs

Data volumes got too large for single-server SQL DBs

And thus, the NoSQL movement was born...

....only to be quickly out-evolved

Evolutionary History of SQL Datastores

What about Filesystems?

Why is Strongly Consistent Metadata important?

• POSIX-like semantics

• Insert a file in a dir, and yes, it will be there!

• Atomic rename

- Building block for scalable SQL systems
- Consistent change data capture (changelog)
 - Data provenance
 - Search/Index/tag the filesystem namespace

HopsFS uses NDB for Strongly Consistent Metadata

Make these Layers Data-Center HA

Multi-DC HopsFS affects every layer of the stack

Database nodes DC-aware Namenodes DC-aware 36% performance improvements by optimizing for DC local operations

Triple replication also possible with HopsFS

LOGICAL CLOCKS

Change Data Capture for HopsFS with Epipe

Overhead of running ePipe on the Spotify Hadoop workload: 4.77% ePipe: Near Real-Time Polyglot Persistence of HopsFS Metadata, Ismail et al, CCGrid, 2019.

ADAS ZEXIRTR REGONA & UN THE CLOUD

Availability: Highly available across Data Centers (AZ)

Performance: >1.6m Ops/Second on Spotify workload (GCE, 3 AZs) NVMe disks used to store small files in metadata layer

Security: TLS-based security

HDFS API: Native support in Spark, Flink, TensorFlow, etc.

Hopsworks - a platform for Data Intensive AI built on Hops

Hopsworks hides the Complexity of Deep Learning

*Figure from "Technical Debt in Machine Learning Systems", Google research paper

Hopsworks hides the Complexity of Deep Learning

Hopsworks hides the Complexity of Deep Learning

Hopsworks Feature Store

Hopsworks REST API Datasources

Hopsworks

The Platform for Data Intensive AI

Machine Learning, Deep Learning & Model serving

Applications

API

Dashboards

Hopsworks

	Orchestration in Airflow				
	Batch	Feature Store	Distributed ML & DL	Serving	
	Apache Beam Apache Spark	Hopsworks Feature Store	Pip install Conda libraries Tensorflow scikit-learn	Kubernetes	
	Streaming		Keras		
	Apache Beam Apache Spark Apache Flink		Jupyter Notebooks		
			Tensorboard	Monitoring Spark Streaming	
	Filesystem and Metadata storage HopsFS				

Big Data

Datasources

Transactions

Encrypt everything TSL/SSL encrypted calls between services with X.509 certificates

Secure Collaboration Multi-Tenancy with Project-based collaboration and resource management

Applications

API

Dashboards

Data Lake Support Integrates with your existing Data Lake or acts as your Data Lake

What is Hopsworks?

Efficiency & Performance

Feature Store Data warehouse for ML

Distributed Deep Learning Faster with more GPUs

HopsFS NVMe speed with Big Data

Horizontally Scalable Ingestion, DataPrep, Training, Serving

Usability & Process

Jupyter/Python Development Notebooks in pipelines

Version Everything Code, Infrastructure, Data

Model Serving on Kubernetes TF Serving, MLeap, SkLearn

End-to-End ML Pipelines Orchestrated by Airflow

Security & Governance

Secure Multi-Tenancy Project-based restricted access

Encryption At-Rest, In-Motion TLS/SSL everywhere

Al-Asset Governance Models, experiments, data, GPUs

Data/Model/Feature Lineage Discover/track dependencies

Which services require Distributed Metadata (HopsFS)?

Efficiency & Performance

Feature Store Data warehouse for ML

٩		مر
	Þ	
Q	Ó	

Distributed Deep Learning Faster with more GPUs

HopsFS NVMe speed with Big Data

Horizontally Scalable Ingestion, DataPrep, Training, Serving

Usability & Process

Jupyter/Python Development Notebooks in pipelines

Version Everything Code, Infrastructure, Data

Model Serving on Kubernetes TF Serving, MLeap, SkLearn

End-to-End ML Pipelines Orchestrated by Airflow

Security & Governance

Secure Multi-Tenancy Project-based restricted access

Encryption At-Rest, In-Motion TLS/SSL everywhere

Al-Asset Governance Models, experiments, data, GPUs

Data/Model/Feature Lineage Discover/track dependencies

End-to-End ML Pipelines in Hopsworks

End-to-End Pipelines can be factored into stages

Typical Feature Store Pipelines

Hopsworks' Feature Store

Dev View: Pipelines of Jupyter Notebooks in Airflow

How to get started with Hopsworks? Register for a free account at: <u>www.hops.site</u> Images available for AWS, GCE, Virtualbox.

We need your support. Star us, tweet about us! https://github.com/logicalclocks/hopsworks

