
Complete, precise graph-
based phrase query

Michael Gibney

University of Pennsylvania Libraries

michael@michaelgibney.net



• Lucene's TokenStream API:
• Initially assumed linear stream of tokens
• Since addition of PositionLengthAttribute (3.6.0), represents tokens as branching 

graphs
• Uses of TokenStream API:

• Index-time: determine tokens/token structure serialized to the index
• Query-time: determine terms and structure of proximity-based queries

TokenStream structure

0 1 2 3 4organic light emitting diode
5

manufacturing

led

oled

Example: "oled manufacturing"



I, Gobeirne [CC BY-SA 3.0 
(http://creativecommons.org/licenses/by-
sa/3.0/)]

Braided River: Waimakariri 
River, Canterbury, NZ

With PositionLengthAttribute, TokenStreams may split and join back 
together, without losing information about token adjacency in different 
branches.

To fully leverage the structure of the TokenStream API would call for three interrelated changes:
1. Store position length in the index
2. Augment Postings API to expose position length to index readers
3. Update query implementation(s) to leverage indexed position length (as exposed through the Postings API)

Latent potential of PositionLengthAttribute



LUCENE-7398: nominally about "nested" Span queries

But the underlying problem is more general: phrase search over variable-length subclauses.

(in the absence of indexed position length, nested Span queries are the primary – perhaps 
only – way of generating/encountering variable-length subclauses)

Accordingly, this presentation will discuss an implementation over SpanNearQuery; but the general 
approach is relevant and applicable to any phrase query implementation, including the new 
IntervalSource API.



Abstraction of the Spans API contract with 
respect to position order

For simplicity, and to emphasize the generality of the problem, we will not explicitly consider "nested" 
Span queries, disjunctions, etc.

The solution will be discussed strictly with respect to the formal constraints of the Spans API, namely:
1. Spans positions are advanced forward-only, by calls to nextStartPosition();
2. within a given doc, positions are ordered "by increasing start position and finally by increasing end 

position"

Notably, we make no other assumptions; endPosition may be arbitrarily larger than startPosition (and as 
a consequence, endPosition may decrease for subsequent startPositions), positions with identical 
startPosition and/or endPosition may be repeated arbitrarily many times, etc.



Index-time graph token adjacency is not preserved
"OLED manufacturing"

0 1 2 3 4organic light emitting diode
5

manufacturing

led

oled

0 1 2 3 4organic light emitting diode
5

manufacturing

ledoled

As tokenized at index-time:

As recorded in index:



1-5

2-3

Clause 0 Clause 1

3-4

5-6

match 1

match 2

A simple case that would break for lazy matching:

D

C

B

A



Status quo: LUCENE-7398

In practice, use of SpanNearQuery currently implies (witting or unwitting) acceptance of:
1. The assumption that the index-time token stream should be linear, minimally augmented, and with 

incrementally increasing position
2. The fact that lazy iteration over subclauses will miss some valid matches, generate some spurious 

matches, and score unpredictably.

Fallback to (Multi)PhraseQuery (which enumerates all possible paths through a given query) fixes the 
second of these issues, but not the first (and doesn't scale well, introducing the potential for exponential 
query expansion)



Foundation: a backtracking-capable Spans wrapper

We need a generic wrapper around Spans that allows us to support backtracking efficiently, without 
buffering any more positions than necessary. 

Backtracking Spans: rather than advancing by calling nextStartPosition(), we advance by calling:

public int nextMatch(int hardMinStart, int softMinStart, int startCeiling, int minEnd);

public int reset(int hardMinStart, int softMinStart);

• hardMinStart: forever discard positions with start < this parameter
• softMinStart: skip (for purpose of returning nextMatch, but do not discard) positions with start < this 

parameter
• startCeiling: disregard (for purpose of returning nextMatch, but do not discard) positions with start >= 

this parameter
• minEnd: when non-negative, defines a minimum threshold for span endPositions. Spans with 

endPosition < this value should be discarded forever



Properties of backtracking-capable Spans wrapper

• Position queue (sorted according to the order of positions from the backing Spans)
• Linked, for efficient iteration and node removal
• Array-backed (circular buffer), for efficient binary seek to particular startPositionsduring 

backtracking
• Dynamically resizable backing array, to support arbitrarily large position buffer



Building matches over subclauses

Each subclause has its own queue of positions

Nodes in those queues are linked laterally across subclauses to "build" matches without duplicating 
information about positions

Phrase "paths" already explored are cached, enabling "match tree" traversal to be shortcircuited (and 
downstream postfix "subtrees" grafted onto new upstream match "prefixes".

Nodes store information about a given position, and prev/next nodes for the given subclause, but also 
"reachable" (within slop contstraints) nodes in prev/next subclauses, and reachable nodes in the last 
subclause. N.b.: Node references must be stable!

The resulting "word lattice" is built by using "nextMatch()" to drive a depth-first search to discover (and 
build/cache) edges in the dynamic graph represented by valid Nodes at a point in time. 



2-dimensional queue traversal, building word lattice

A

B

C

D

E

F

A'

B'

C'

D'

E'

F'

A''

B''

C''

D''

E''

F''



Managing GC for heavily-linked data structure

links/edges between Nodes require many simple linking nodes (similar to those required to “link” a linked list).

• Lots of small, transient objects
• Lots of GC (potentially)

Solution: pool queue Nodes and linking nodes.
• Separate pool for each subclause (pool grows to suit needs of particular subclause)
• Nodes are released/reused when they are no longer referenced in the match "word lattice"
• Linking nodes are returned to the pool upon release/reuse of their currently-associated Node.

Results, on a moderate-sized production index:
• Consistent performance
• 2x to 10x better performance than with object pooling disabled (the highly variable response time is in 

keeping with the intermittent nature of long GC-related pauses).



Support for indexed position length

This query implementation finally gives a reason to index (as opposed to ignore) position length

For purposes of development, testing, and initial deployment, position length has been recorded in 
Payloads in the index.

This encoding is accomplished by a "PositionLengthOrderTokenFilterFactory", which orders tokens to 
conform to the ordering specified by the Spans API (startPosition, secondary sort on endPosition).

I would love to evaluate the performance impact of position length recorded natively in the index and 
exposed via postings API … LUCENE-4312?



startPosition lookahead

Thorough matching requires storing all relevant positions, to support backtracking

But to know whether all relevant positions have been seen, must always iterate past relevant positions, to 
the first irrelevant position … so we'd always be buffering all relevant positions.

Solution: at term level (with benefits cascading up to higher-level conjunction Spans), support lookahead 
startPosition without actually advancing Spans position.

This approach works nicely, but was a little tricky to integrate with the "word lattice" 2-dimensional queue 
approach to building matches – integration was accomplished by having each Node start as a "provisional" 
unbuffered wrapper around the backing Spans.

Implemented with Payloads for now; but might theoretically be integrated directly in codecs, pre-loading and 
buffering exactly 1 startPosition



PositionLength edge cases

Optimizations for the relatively common case of a SpanNearQuery composed mainly (or exclusively) of simple 
TermSpans subclauses

Now that we're indexing position length and using it at query time, there are shortcircuits and optimizations 
that we can make if we know, for a given term in a given document:
1. Whether endPosition ever decreases across subsequent positions (often "no")
2. The maximum positionLength (often "1")

Currently implemented as 4 bytes pre-allocated in the Payload of the first instance of each term in each doc. 
And updated on doc flush.



Common words: the last hurdle

Now that SpanNearQuery respects position length, and position length is indexed, we have a reason to 
use SpanNearQuery for all queries – not just ones that are recognizable at as graph queries

Common words proved problematic though: once we drop the assumption of positionLength==1, we 
always have to start our matches from the first subclause, losing the ability* to lead the search with less 
common/costly terms. Standard "common word" solutions both wreak havoc with phrase search:
1. CommonGramsFilter
2. StopwordFilter

Current solution: leave main field indexed as-is, build separate field of "CommonGrams"-style shingles 
to perform pre-filtering of conjunction Spans within pre-determined maximum slop.

For our use cases, this approach has resulted in worst-case SpanNearQuery performance nearly 
identical to extant worst-case PhraseQuery performance, and we are now running full graph queries in 
production for every user query.

* "losing the ability" -- or, the logic and prerequisites for doing so would become considerably more complicated



Match modes

Different types of matching are appropriate to different situations. The thoroughness of matching under 
the modified SpanNearQuery supports nuanced match modes, including:

1. Greedy: Once a valid match is found for a given startPosition, greedy match mode shortcircuits without 
attempting to find other valid paths for that startPosition. 

2. PerEndPosition: This mode will continue exploring possible match paths until it is determined that all 
valid endPositionsfor a given startPosition have been discovered. 

3. PerPosition: This mode will continue exploring possible match paths until it is determined that all valid 
positions for all subclauses have been reported as a match.



Major Benefits

Introduces robust support for:

• index-time multi-term synonyms

• Index-time WordDelimiterGraphFilter

• Index-time multi-token orthographic variants (e.g., CJK, etc.)

• Other tokenization schemes that could create complex token graph structures (e.g., NGrams, Shingles, etc.)

More intuitive/predictable behavior of queries:

• More thorough, predictable, nuanced scoring

• Improved behavior of other queries (perhaps ComplexPhraseQParser)



Potential non-text use cases?

There are non-text use cases that could be well-represented as "text": an ordered stream of discrete, 
possibly overlapping, elements, each having a start "position" and an end "position".

Time-series data would provide promising candidates:
• Travel scheduling
• Complex event processing

But also perhaps other domains -- especially domains that prioritize precision.



Thank you!

Links:
https://issues.apache.org/jira/browse/LUCENE-7398
https://michaelgibney.net/lucene/graph/
https://github.com/magibney/lucene-solr/tree/LUCENE-7398/master

Contact:
michael@michaelgibney.net

Testing and feedback are welcome!

https://issues.apache.org/jira/browse/LUCENE-7398
https://michaelgibney.net/lucene/graph/
https://github.com/magibney/lucene-solr/tree/LUCENE-7398/master
mailto:michael@michaelgibney.net

