
Towards consensus on distributed
consensus

Flavio Junqueira

About me
• Core area of expertise: distributed computing

• Confluent

✓ Infrastructure Engineer

✓ Kafka Core

• Apache Software Foundation (ASF)

✓ Apache ZooKeeper, BookKeeper, Kafka

✓ Apache Incubator

• Previously

✓ Yahoo! Research and Microsoft Research

Distributed Systems

Messages and Processes

4

Process 1
Process 2

Process 3

Process 4

Process 5

Process 1

msg
msg msg

msg

System:
• n independent processes
• communicate by exchanging messages
• messages follow a protocol

msg
msg

Process 6

Shared objects and RPCs

5

Client
get(k)

set(k, v)
delete(k)

Server
k1, v1
k2, v2

…
kn, vn

RPCs

Network messages are
transparent to the processes

In this talk…
• Distributed consensus

✓ Agreement among processes

• Consensus is a fundamental primitive

✓ … you can get around without it, but not always

• Typically, not in the critical path

6

Distributed Consensus

Distributed Consensus

• Set of processes, nodes, servers….

• Each process proposes an initial value

• Processes eventually agree on a value

• Must tolerate crashes

8

Distributed Consensus

• Set of processes, nodes, servers….

• Each process proposes an initial value

• Processes eventually agree on a value

• Must tolerate crashes

9

No Byzantine behavior

Distributed Consensus

10

Color:

Color:

Color:

P1

P2

P3Colors are the
 proposed values

Distributed Consensus

11

Color:

Color:

Color:

P1

P2

P3Black is decided.

How do we get consensus?

12

Color:

Color:

Color:
P1

P2

P3

Accepted: ?
Decided:?

Accepted: ?
Decided:?

Accepted: ?
Decided:?

What value have you accepted?
What value have you accepted?

Pick a leader

? ?

How do we get consensus?

13

Color:

Color:

Color:
P1

P2

P3

Accepted: ?
Decided:?

Accepted: ?
Decided:?

Accepted: ?
Decided:?

Pick a leader

accept accept

How do we get consensus?

14

Color:

Color:

Color:
P1

P2

P3

Accepted: ?
Decided:?

Accepted:
Decided:?

Accepted:
Decided:?

Pick a leader

accept accept

How do we get consensus?

15

Color:

Color:

Color:
P1

P2

P3

Accepted:
Decided:?

Accepted:
Decided:?

Accepted:
Decided:?

Pick a leader

accepted accepted

accepted

How do we get consensus?

16

Color:

Color:

Color:
P1

P2

P3

Accepted:
Decided:

Accepted:
Decided:

Accepted:
Decided:

Pick a leader

accepted accepted

accepted

Not entirely safe…

How do we get consensus?

18

Color:

Color:

Color:
P1

P2

P3

Accepted: ?
Decided:?

Accepted: ?
Decided:?

Accepted: ?
Decided:?

What value have you accepted?

Pick a leader

Former leader

What value have you accepted?

?

?

Messages are
delayed

How do we get consensus?

19

Color:

Color:

Color:
P1

P2

P3

Accepted:
Decided:?

Accepted:
Decided:?

Accepted: ?
Decided:?

Pick a leader

Former leader

accept

How do we get consensus?

20

Color:

Color:

Color:
P1

P2

P3

Accepted:
Decided:

Accepted:
Decided:?

Accepted: ?
Decided:?

Pick a leader

Former leader

accepted

How do we get consensus?

21

Color:

Color:

Color:
P1

P2

P3

Accepted:
Decided:

Accepted:
Decided:?

Accepted:
Decided:?

Pick a leader

Former leader

accept

How do we get consensus?

22

Color:

Color:

Color:
P1

P2

P3

Accepted:
Decided:

Accepted:
Decided:

Accepted:
Decided:

Pick a leader

Former leader

accepted

How do we get consensus?

23

Color:

Color:

Color:
P1

P2

P3

Accepted:
Decided:

Accepted:
Decided:

Accepted:
Decided:

Pick a leader

Former leader

accepted

Violation of
agreement

Fence (ballot number)

How do we get consensus?

25

Color:

Color:

Color:
P1

P2

P3

Promise: 3
Accepted: ?
Decided:?

Promise: 3
Accepted: ?
Decided:?

Promise: 2
Accepted: ?
Decided:?

What value have you accepted?
(ballot number 3)

Pick a leader

Former leader

What value have you accepted?
(ballot number 2)

?

?

Promise: 3
Accepted:
Decided:

How do we get consensus?

26

Color:
P1

P2

P3

Accepted:
Decided:?

Pick a leader

Former leader

accept
(ballot 2)Color:

Promise: 3
Accepted:
Decided:?

Color:

fails

Promise: 3
Accepted:
Decided:

How do we get consensus?

27

Color:
P1

P2

P3

Accepted:
Decided:?

Pick a leader

Former leader

Color:
Promise: 3
Accepted:
Decided:

Color: accepted

Impossibility
• Message delays, network partitions, slow processes

✓ Asynchronous systems

• Consensus revisited

✓ Non-faulty processes agree on a value

✓ The decision value must have been proposed

✓ Decide eventually

28
[Fischer, Lynch, Patterson, Impossibility of distributed consensus with one faulty process, JACM, April 1985]

Impossibility
• Message delays, network partitions, slow processes

✓ Asynchronous systems

• Consensus revisited

✓ Non-faulty processes agree on a value

✓ The decision value must have been proposed

✓ Decide eventually

29
[Fischer, Lynch, Patterson, Impossibility of distributed consensus with one faulty process, JACM, April 1985]

⬅ Termination

Impossibility

30

Have two processes running
a consensus protocol

P1
Color:

P2
Color:

P1
Color:

P2
Color:

Impossibility

31

1: P1
Color:

P2
Color:

2:

Decision
value

Decision
value

Impossibility

32

P2
Color:

P1
Color:

Decision
value

3:

Decision
value

Impossibility

33

P2
Color:

P1
Color:

P1 decides blue

3:

P2 decides green

Messages are delayed
 or processes are slow.

Bottom line: can’t distinguish slow
from crashed.

Possible
• Partially synchronous system

✓ Asynchronous at times

✓ Eventually stabilizes

• Able to elect a stable leader

• Have 2f + 1 processes

✓ f is the number of tolerated crashes

✓ no Byzantine behavior in this presentation

34

State machine replication
and Atomic broadcast

Consensus, Broadcast, and Replication

• Important application of distributed consensus

✓ Replication

• State-machine replication

✓ Agreement -> atomic broadcast

✓ Execution -> deliver and execute requests

36

Variables:
i: 10
j: 25
…

Replication

37

Server

execute(command)
…

Client

State

Client Client

Command 1 Command 2 Command 3

Logic

Variables:
i: 10
j: 25
…

Replication

38

Server

execute(command)
…

Client

State

Client Client

Command 1 Command 2 Command 3

Logic Logic and state
captured as a
deterministic
state machine

Replication - Consistency

39

Server Replica 1
Logic State

Server Replica 2
Logic State

Server Replica 3
Logic State

Command 1
Command 2
Command 3

Command 1
Command 2
Command 3

Command 1
Command 2
Command 3

Replication - Consistency

40

Server Replica 1
Logic State

Server Replica 2
Logic State

Server Replica 3
Logic State

Command 1
Command 2
Command 3

Command 1

Command 3

Command 1
Command 2
Command 3

Missing a command

Replication - Consistency

41

Server Replica 1
Logic State

Server Replica 2
Logic State

Server Replica 3
Logic State

Command 1
Command 2
Command 3

Command 1

Command 3

Command 1
Command 2
Command 3

Missing a command

Replication - Consistency

42

Server Replica 1
Logic State

Server Replica 2
Logic State

Server Replica 3
Logic State

Command 1
Command 2
Command 3

Command 1
Command 3
Command 2

Command 1
Command 2
Command 3

Reordering commands

Replication - Consistency

43

Server Replica 1
Logic State

Server Replica 2
Logic State

Server Replica 3
Logic State

Command 1
Command 2
Command 3

Command 1
Command 3
Command 2

Command 1
Command 2
Command 3

Reordering commands

Replication - Consistency

44

Server Replica 1
Logic State

Server Replica 2
Logic State

Server Replica 3
Logic State

Command 1
Command 2
Command 3

Command 1
Command 2
Command 3

Command 1
Command 2
Command 3

Atomic broadcast

Client Client Client

Command 1 Command 2 Command 3 • Same commands are delivered to
all replicas

• Commands delivered in the same
order

Apache ZooKeeper

45

ZK server 1
Logic Data Tree

Zab

create
setData
delete
getData
exists
getChildren

znodes

ZK server 2
Logic Data Tree
create
setData
delete
getData
exists
getChildren

znodes

ZK server 1
Logic Data Tree
create
setData
delete
getData
exists
getChildren

znodes

Atomic broadcast vs. Consensus

46

Consensus

Propose ⟨value⟩ Decide ⟨value⟩

Process

Atomic
Broadcast

Send ⟨msg⟩ Deliver ⟨msg⟩

Process

Properties:
1. Decide upon a single value
2. Decide upon a value proposed

by some process
3. Eventually decide

Properties:
1. Deliver the same messages to all

processes
2. Deliver all messages in the same

order

Atomic broadcast vs. Consensus

47

Consensus
Instance 1

Atomic broadcast

Consensus
Instance 2

Consensus
Instance 3

Consensus
Instance k

Consensus
Instance k + 1

Propose m1 Propose m2 Propose m3

Decide m1 Decide m2 Decide m3

Propose mk

Decide mk

Propose mk+1

Decide mk+1

1- AB →Consensus

2- Consensus →AB
Send v0 Send v1 Send v2

v2
v0
v1

Atomic broadcast vs. Consensus

48

Consensus
Instance 1

Atomic broadcast

Consensus
Instance 2

Consensus
Instance 3

Propose m1 Propose m2 Propose m3

Decide m1 Decide m2 Decide m3

1- AB →Consensus

2- Consensus →AB
Send v0 Send v1 Send v2

v2
v0
v1

Sequence of
messages
broadcast

Consensus
Instance k

Consensus
Instance k + 1

Propose mk

Decide mk

Propose mk+1

Decide mk+1

Atomic broadcast vs. Consensus

49

Consensus
Instance 1

Atomic broadcast

Consensus
Instance 2

Consensus
Instance 3

Propose m1 Propose m2 Propose m3

Decide m1 Decide m2 Decide m3

1- AB →Consensus

2- Consensus →AB
Send v0 Send v1 Send v2

v2
v0
v1

Sequence of
messages
broadcast

Consensus
Instance k

Consensus
Instance k + 1

Propose mk

Decide mk

Propose mk+1

Decide mk+1

e.g., choose first

How do I replicate my
own system?

From scratch…

51

Server Replica 1
Logic State

Server Replica 2
Logic State

Server Replica 3
Logic State

Command 1
Command 2
Command 3

Command 1
Command 2
Command 3

Command 1
Command 2
Command 3

Atomic broadcast (Zab, Raft, or other Paxos variant)

• Quorum-based replication, typically majority
• Reconfiguration internal to the protocol

Zab Flow

52

CEPOCH

CEPOCH

NEWEPOCH

NEWEPOCH

ACK-E

ACK-E

NEWLEADER

NEWLEADER

ACK-LD

ACK-LD

PROPOSE

PROPOSE

ACK

ACK

COMMIT

COMMIT

Follower

Leader

Follower

BroadcastSynchronization

COMMIT-LD

COMMIT-LD

PROPOSE = Leader proposes a new transaction
ACK = Follower acknowledges leader proosal
COMMIT = Leader commits proposal

Discovery

CEPOCH = Follower sends its last promise to the prospective leader
NEWEPOCH = Leader proposes a new epoch e'
ACK-E = Follower acknowledges the new epoch proposal
NEWLEADER = Prospective leader proposes itself as the new leader of epoch e'
ACK-LD = Follower acknowledges the new leader proposal
COMMIT-LD = Commit new leader proposal

Using a configuration master

53

Apache Kafka Apache BookKeeper

[L. Lamport, D. Malkhi, L. Zhou, Vertical paxos and primary-backup replication,PODC 2009]

Apache Kafka - 10,000 ft

54

Producer

Producer

Producer

Producer

Topics
Consumer

Consumer

Consumer

msg
msg

msg

msg

msg

msg
msg

msg
msg

msg

msg
msg

Cluster

Apache Kafka - Replication

• Topics

• Partitions

• Replication

55

Follower

Follower

Leader

Server

Server

Topic T
Partition 1

Topic T
Partition 2

Topic T
Partition 3

Kafka Cluster

Server

Follower

Follower

Leader

Follower

Follower

Leader

Partition replication

56

Leader Follower Follower Follower Follower Follower

6 replicas

Partition replication

57

Leader Follower Follower Follower Follower Follower

6 replicas
ISR - In-sync replicas

Partition replication

58

Leader Follower Follower Follower Follower Follower

6 replicas
ISR - In-sync replicas

ISR

Set of replicas that must
 reply before commit

Partition replication

59

L

F

F

F

F

F

L

F

F

F

F

F

L

F

F

F

F

F

ISR ISR
Shrinks

ISR
Expands

Time

Partition replication

60

Time

ISR = {1, 2, 3, 4, 5, 6} ISR = {1, 2, 3}

L

F

F

F

F

F

L

F

F

F

F

F

L

F

F

F

F

F

ISR = {1, 2, 3, 4, 5}

ZooKeeper ZooKeeper ZooKeeper

Uses Apache
Zookeeper

Partition replication

61

Time

ISR = {1, 2, 3, 4, 5, 6} ISR = {1, 2, 3}

L

F

F

F

F

F

L

F

F

F

F

F

L

F

F

F

F

ISR = {4, 5, 6}

ZooKeeper ZooKeeper ZooKeeper

L

How do we
prevent a split-
brain scenario

like this?

Partition replication

62

Time

ISR = {1, 2, 3, 4, 5, 6} ISR = {1, 2, 3}

L

F

F

F

F

F

L

F

F

F

F

F

L

F

F

F

F

ISR = {1, 2, 3}

ZooKeeper ZooKeeper ZooKeeper

• Read the ISR from
ZK first

• Need an element
from the previous
ISR: 1, 2 or 3

Cannot
become the
new ISR

F

Partition replication

63

Time

ISR = {1, 2, 3, 4, 5, 6} ISR = {1, 2, 3}

L

F

F

F

F

F

L

F

F

F

F

F

L

F

F

F

F

ISR = {1, 2, 3}

ZooKeeper ZooKeeper ZooKeeper

Perhaps join
the current
ISR instead

F

• Read the ISR from
ZK first

• Need an element
from the previous
ISR: 1, 2 or 3

Partition replication

64

Time

ISR = {1, 2, 3, 4, 5, 6} ISR = ?

L

F

F

F

F

F

L

F

F

F

F

ZooKeeper ZooKeeper

L

• How do we avoid
this split brain?

• Both subsets were
part of the
previous ISR

Partition replication

65

Time

ISR = {1, 2, 3, 4, 5, 6}
Version = 0

ISR = ?
Version = ?

L

F

F

F

F

F

L

F

F

F

F

ZooKeeper ZooKeeper

L

• Use compare-and-swap
• Versions in ZooKeeper

Partition replication

66

Time

ISR = {1, 2, 3, 4, 5, 6}
Version = 0

ISR = ?
Version = ?

L

F

F

F

F

F

L

F

F

F

F

ZooKeeper ZooKeeper

L

Write:
 ISR={4, 5, 6}
 version = 0

Write:
 ISR={1,2,3}
 version = 0

Partition replication

67

ISR = {1, 2, 3, 4, 5, 6}
Version = 0

ISR = ?
Version = ?

L

F

F

F

F

F

L

F

F

F

F

ZooKeeper ZooKeeper

L

Write:
 ISR={4, 5, 6}
 version = 0

Write:
 ISR={1,2,3}
 version = 0

ISR = {1, 2, 3}
Version = 1

L

F

F

F

F

ZooKeeper

F

ISR = {1, 2, 3, 4, 5 ,6}
Version = 2

L

F

F

F

F

ZooKeeper

F

Time

Total order of ISR changes

68

ISR = {1, 2, 3, 4, 5, 6}
Version = 0

ISR = {1, 2, 3}
Version = 1

ISR = {1, 2, 3, 4, 5 ,6}
Version = 2

Need agreement on the
 order of ISR changes

Apache BookKeeper
• Ledgers

✓ Like a log segment

• Ensemble

• Single-writer

• Only writer changes the
ensemble composition

69

Client

Bookie 1

Replicated and striped

2, <1101110>
0, <0110101>

1, <1011110>
0, <0110101>

2, <1101110>
1, <1011110>

Bookie 2 Bookie 3

Apache BookKeeper

70

Client

2, <1101110>
0, <0110101>

1, <1011110>
0, <0110101>

2, <1101110>
1, <1011110>

ZooKeeeper

Bookie 1 Bookie 2 Bookie 3

Ledger metadata Ledger
0: B1, B2, B3

Apache BookKeeper

71

Client

2, <1101110>
0, <0110101>

1, <1011110>
0, <0110101>

2, <1101110>
1, <1011110>

ZooKeeeper

Bookie 1 Bookie 2 Bookie 3

Bookie 4

Ledger
0: B1, B2, B3

Apache BookKeeper

72

Client

3, <1110110>

ZooKeeeper

Bookie 1 Bookie 2 Bookie 4

Ledger
0: B1, B2, B3
3: B1, B2, B4

3, <1110110>
2, <1101110>
0, <0110101>

4, <1000110>
3, <1110110>
1, <1011110>
0, <0110101>

4, <1000110>

4, <1000110>

4, <1000110>
3, <1110110>

Ledger metadata

Apache BookKeeper

73

Client

ZooKeeeper

Bookie 1 Bookie 2 Bookie 4

Ledger
0: B1, B2, B3
2: B1, B2, B4
Closed at 2

2, <1101110>
0, <0110101>

1, <1011110>
0, <0110101>

2, <1101110>
1, <1011110>

Client

• Need to close the ledger
• Last entry replicated

Apache BookKeeper

74

Client

ZooKeeeper

Bookie 1 Bookie 2 Bookie 4

⟨Ledger
0: B1, B2, B3
2: B1, B2, B4
Closed at 2>,
Version 1

2, <1101110>
0, <0110101>

1, <1011110>
0, <0110101>

2, <1101110>
1, <1011110>

Client

• Need to close the ledger
• Last entry replicated
• Rely on zk version

Use Compare-and-Swap

• CAS is consensus number n

• … which means that the CAS object must
implement consensus for n processes

75

[Herlihy, Wait-free Synchronization]

Where is consensus not
needed?

(also from Herlihy’s Hierarchy)

Read/Write Registers

77

read()
write() x = 10

P

read 10

P

write 10 Ok

Consensus number 1
(can’t have consensus even

for 2 processes only)

Key-Value Store

78

get(key)
set(key, value)
delete(key)

key1 = 10
key2 = 23
key3 = 54
…

P

get key1 10

P

set key2,23 Ok

Implementation

79

Server Replica 1
Logic State

Server Replica 2
Logic State

Server Replica 3
Logic State

get
set
get

get
set
get

get
set
get

Client Client Client

get set get

get
set
delete

get
set
delete

get
set
delete

key1 = 10
key2 = 23
key3 = 54

key1 = 10
key2 = 23
key3 = 54

key1 = 10
key2 = 23
key3 = 54

Atomic Broadcast

• Builds on consensus
• Exposes a weaker

primitive

Stripped-down ZooKeeper

80

ZK server 1
Logic Data Tree

Zab

create
setData
delete
getData
exists
getChildren

znodes

ZK server 2
Logic Data Tree

znodes

ZK server 1
Logic Data Tree

znodescreate
setData
delete
getData
exists
getChildren

create
setData
delete
getData
exists
getChildren

Additionally: setData and delete
are unconditional

Becomes a key-value store

Why doesn’t ZooKeeper
KV-store solve consensus?

No-consensus argument

82

Client 1

Client 2

ZooKeeper
/consensus = ⫠

getData
/consensus

⫠

setData
/consensus, 0

getData
/consensus

⫠

/consensus = 0

setData
/consensus, 1

/consensus = 1

Decide 0 or
read again?

• Clients 1 and 2 are trying to get consensus
• Client 1 initial value is 0
• Client 2 initial value is 1

Time

Wrap up

Distributed Consensus

Atomic broadcast

State-machine replication

Compare-and-swap
— used to coordinate

replica sets

r/w registers
— e.g., key-value

stores

consensus number nconsensus number 1

Questions?
e-mail: fpj@apache.org
twitter: @fpjunqueira
web site: http://fpj.me

http://confluent.io

