

“ Lucidworks

Chatting with Solr

Erik Hatcher, Lucidworks
erik.hatcher@lucidworks.com

Twitter: @erikhatcher

mailto:erik.hatcher@lucidworks.com

A word from your Sponsotr...

Will Hayes talk:
Building and Scaling a High Performing Development Team

* with folks like you!: Passionate, Smart, Caring, Diverse
* QOpen source

 Lucidworks IS HIRING! More than doubled in the past year

"[His proposed] fun, non-technical, talk [was] for members
of development teams at all levels looking to increase the
performance and productivity in themselves and others."”

you autocomplete us

Back to the talk...

This fun, technical, talk is for members
of development teams at all levels
looking to Increase the relevancy ana

value In thelr searob, systems and data
.

pipelines using Solr -

Bank of America’s Intelligent Assistant Erica Helps
Guide More Than 7 Million Customers

BY DEREK TOP on JUNE 10, 2019 - (O (0)

One year after its nationwide launch, Bank of America’s
conversational intelligent assistant Erica has achieved
significant milestones. Recently, BofA touted the
success of its digital banking assistant that uses
natural language processing and predictive analytics to
engage digital banking customers. Among the notable
achievements: Zelle® activity

Here are your Zelle payments

Susie Smith - 123-456-7890

e Completed over 50 million client requests,
iIncluding banking activities and more complex
tasks

e 500,000 new users per month engage with Erica Dan Smith -
dan.smith22@aol.com

e Expanded its knowledge base of financial
questions from 200,000 at launch to more than
400,000 today

 Cross-generational engagement, with 15% from Gen Z, 49% millennials, 20% Gen X and
16% baby boomers/seniors

https://opusresearch.net/wordpress/2019/06/10/bank-of-americas-intelligent-assistant-erica-helps-guide-more-than-7-million-customers/

https://opusresearch.net/wordpress/2019/06/10/bank-of-americas-intelligent-assistant-erica-helps-guide-more-than-7-million-customers/

Chatting with Solr

* Building a chat system relies on recognizing known entities being uttered.
The Solr Tagger, a powerful unique capability of Apache Solr, provides
performant tagging of known, concrete items in free text. Using the Solr

Tagger as a first stage of query interpretation provides rich entity metadata
that can be leveraged to hone in on user intent.

* This session will introduce the Solr Tagger and its myriad of use cases

culminating with a chat application that creatively uses the tagger for
query interpretation.

Solr Tagger

» https://lucene.apache.org/solr/guide/the-tagger-handler.html

* Given a dictionary (a Solr index) with a name-like field, you can post text to
this request handler and it will return every occurrence of one of those
names with offsets and other document metadata desired. It’s used for

named entity recognition (NER).

 The tagger doesn’t do any natural language processing (NLP) (outside of
Lucene text analysis) so it’s considered a "naive tagger”, but it’s definitely
useful as-is and a more complete NER or ERD (entity recognition and
disambiguation) system can be built with this as a key component. The
SolrTextTagger might be used on queries for query-understanding or large

documents as well.

https://lucene.apache.org/solr/guide/the-tagger-handler.html

Tagger Basics

straightforward tool to tag concrete, known (text string) entities
"tags” are documents in a specialized collection

« field type for tag fields must end with ConcatenateGraphFilterFactory
e solr.TagRequestHandler end-point needs to be defined

Index time, tagging document text

e use tagged content for new fields

Query time, tagging the query

* use tags to modify the query for improved relevancy

POST v http://localhost:8983/solr/things/tag?overlaps=NO_SUB&tagsLimit=100&wt=js...

e h N leaders (10) Body @

none form-data X-www-form-urlencoded ® raw binary Text (text/plain) ¥

1 Buzzwords 1n Berlin

{

"responseHeader" : {
"status":0,
"QTime" :0},

"tagsCount”:1,

"tags":[[
"startOffset",13,
"endOffset",19,
"matchText","Berlin",
"1ds",["2950159" 111,

"response” :{"numFound":1, "start":0,"docs" : [
{

"type":"city",
"name" :["Berlin"],
"1d":"2950159"}]

b}

KEY

overlaps

tagsLimit

Wt

iIndent

match

fl

fq

ext

Tagger Parameters

VALUE

NO_SUB
100
json

on

true

id,type,name

type:city

DESCRIPTION

ALL, NO_SUB, LONGEST_DOMINANT_RIGHT

Max number of tags evaluated and returned

Return matched text snippet (triggers full input buffering)

Fields to return for each tag document

Limit which set of tag documents are available

Tagger Iin Perspective

e Use in combination with other technigues:

 The tagger doesn't tag arbitrary dates or numbers; combine with a

stage to recognize patterned content such as four digit numbers such
as years: A\d\d\d\d/

* Query context: location, user profile/demographics

« NLP

* The tagger collection can be built from from static data (cities.csv) or
machine learned (such as head/tail analysis)

Meet Lou

You: Hey Lou, who are you?

Lou: I’M Lou, from Lucidworks

* Hey Lou, remind me soon to wrap up this demo
 Where is Berlin?

 What is the population of Berlin?

Lou does...

tagging/replacing of known things mentioned, by name, in utterances
e basic information about a thing: id, type, name

* things may contain any other information needed for findability or
presentation

looking up best grammar matches for tagged, typed utterances
things: entities; typed documents in a Solr Tagger enabled collection

grammar: slotted utterances and associated actions

Lou's Query Pipeline

e Where is Berlin?

 Tagger: Where is Berlin?

* {"name": "Berlin", "type": "city", "latitude_s": "52.52437", "longitude_s":
"13.41053"}

 Grammar: Where is <city>"?

* render map to lat/long

Machine Learned Tags in Fusion

Query Rewriting Dashboard

Query Rewriting

Business Rules

Business rules are versatile, manually-created rules that
use your domain-specific expertise to improve relevancy.

Business rules can be as simple or as complex as needed.

@ cEnabled VIEW

Phrase Detection

This strategy identifies phrases in past queries so that
they can be boosted in future queries regardless of
whether the user distinguishes them with quotation

marks.

@ cnabled VIEW

Underperforming Query Rewriting

This strategy identifies underperforming queries and
replaces them with similar queries that produce better
click-through rates. These always require review before

they are published.

@ cnabled VIEW

Synonym Detection

This strategy identifies similar queries and pairs of
synonyms. Synonyms pairs are used to expand queries
so that they include all known synonyms of the query

terms.

@ cnabled VIEW

SIMULATOR

Misspelling Detection

This strategy identifies misspelled queries and produces
spelling corrections. Published corrections are used to

rewrite misspelled queries for better results.

@ cEnabled VIEW

Tagging Iin Lucidworks Fusion

) Text Tagger =

Param to Tag
Q Boost with Signals

q
Q Query Fields Name of the parameter in the request containing text to tag, defaults to 'q’
Field Facet
Q Tagged Output Param
Q Apply Rules
O Solr Query Apply the matching tags to the ‘paramiolag’ value and set the parameter specified by this option; defaults to the value ...

Q Modify Response with Rules Save Tags in Context

Save tags in context instead of applying directly to the incoming query in this stage; allows downstream stages to apply ...

Spell Correction |v

See also...

e Using Solr Tagger for Improving Relevancy

e https://lucidworks.com/2019/05/17/solr-tagger-improving-relevancy/

https://lucidworks.com/2019/05/17/solr-tagger-improving-relevancy/

:bbq near haystack

TAGGED: bbq {near} {haystack}

PARSED: { type:keyword, known: false, surface_form: "bbq"} {type: command,
canonical_form: "{location_distance}"} {type: event, canonical_form: "haystack
conference”}

TO SOLR: ("bbg" OR "ribs""0.659 OR "brisket""0.639 OR "pork""0.622) AND
type:“restaurant” {!geofilt d=50 sfield="coordinates_pt" pt="38.030750,-78.482628")

Natural Language Search with Knowledge Graphs
presented by Trey Grainger

https://haystackconf.com/2019/natural/

Conclusion

Solr Tagger provides known entity tagging of text
Very fast, even on large text

A great first stage in a query pipeline, providing valuable metadata to then
use cleverly to enhance query interpretation and result relevancy

Useful as an index pipeline pre-processor to extract known entities from
text, pulling them into additional fields for faceting. Naive "classifier"?

