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Streaming technology is enabling the obvious: 
continuous processing on data that is 

continuously produced



Apache Flink Stack
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DataStream API
Stream Processing

DataSet API
Batch Processing

Runtime
Distributed Streaming Data Flow

Libraries

Streaming and batch as first class citizens.



Programs and Dataflows
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Source

Transformation

Transformation

Sink

val lines: DataStream[String] = env.addSource(new FlinkKafkaConsumer09(…))

val events: DataStream[Event] = lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.apply(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

Source
[1]

map()
[1]

keyBy()/
window()/
apply()
[1]

Sink
[1]

Source
[2]

map()
[2]

keyBy()/
window()/
apply()
[2]

Streaming
Dataflow



What makes Flink flink?
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Low latency

High Throughput

Well-behaved
flow control

(back pressure)

Make more sense of data

Works on real-time
and historic data

True
Streaming

Event Time

APIs
Libraries

Stateful
Streaming

Globally consistent
savepoints

Exactly-once semantics
for fault tolerance

Windows &
user-defined state

Flexible windows
(time, count, session, roll-your own)

Complex Event Processing



The (Classic) Use Case
Realtime Counts and Aggregates
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(Real)Time Series Statistics

7

stream of events realtime statistics



The Architecture
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collect log analyze serve & store



The Flink Job
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case class Impressions(id: String, impressions: Long)

val events: DataStream[Event] = 
env.addSource(new FlinkKafkaConsumer09(…))

val impressions: DataStream[Impressions] = events
.filter(evt => evt.isImpression)
.map(evt => Impressions(evt.id, evt.numImpressions)

val counts: DataStream[Impressions]= stream
.keyBy("id")
.timeWindow(Time.hours(1))
.sum("impressions")



The Flink Job
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Kafka
Source

map()
window()/

sum()
Sink

Kafka
Source

map()
window()/

sum()
Sink

filter()

filter()

keyBy()

keyBy()



Putting it all together
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Periodically (every second)
flush new aggregates

to Redis



How does it perform?
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Latency Throughput
Number of

Keys



99th Percentile

Latency (sec)
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2

1

Storm 0.10

Flink 0.10

60 80 100 120 140 160 180

Throughput

(1000 events/sec)

Spark Streaming 1.5

Yahoo! Streaming Benchmark
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Latency

(lower is better)



Extended Benchmark: Throughput
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Throughput

• 10 Kafka brokers with 2 partitions each
• 10 compute machines (Flink / Storm)

• Xeon E3-1230-V2@3.30GHz CPU (4 cores HT)
• 32 GB RAM (only 8GB allocated to JVMs)

• 10 GigE Ethernet between compute nodes
• 1 GigE Ethernet between Kafka cluster and Flink nodes



Scaling Number of Users

 Yahoo! Streaming Benchmark has 100 keys only
• Every second, only 100 keys are written to

key/value store

• Quite few, compared to many real world use cases

 Tweet impressions: millions keys/hour
• Up to millions of keys updated per second
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Number of
Keys



Performance
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Number of
Keys



The Bottleneck
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Writes to the key/value
store take too long



Queryable State
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Queryable State

19



Queryable State
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Optional, and
only at the end of

windows



Queryable State Enablers

 Flink has state as a first class citizen

 State is fault tolerant (exactly once semantics)

 State is partitioned (sharded) together with the operators 
that create/update it

 State is continuous (not mini batched)

 State is scalable (e.g., embedded RocksDB state backend)
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Queryable State Status

 [FLINK-3779] / Pull Request #2051 :
Queryable State Prototype

 Design and implementation under evolution

 Some experiments were using earlier versions of the 
implementation

 Exact numbers may differ in final implementation, but order 
of magnitude is comparable

22



Queryable State Performance
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Queryable State: Application View
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Application only interested in latest realtime results

Application



Queryable State: Application View
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Application requires both latest realtime- and older results

Database

realtime results older results

Application Query Service

current time
windows

past time
windows



Apache Flink Architecture Review
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Queryable State: Implementation
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Query Client

State
Registry

window()/
sum()

Job Manager Task Manager

ExecutionGraph

State Location Server

deploy

status

Query: /job/operation/state-name/key

State
Registry

window()/
sum()

Task Manager

(1) Get location of "key-partition"
for "operator" of" job"

(2) Look up
location

(3)
Respond location

(4) Query
state-name and key

local
state

register



Contrasting with key/value stores
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Turning the Database Inside Out

 Cf. Martin Kleppman's talks on 
re-designing data warehousing
based on log-centric processing

 This view angle picks up some of
these concepts

 Queryable State in Apache Flink = (Turning DB inside out)++
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Write Path in Cassandra (simplified)
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From the Apache Cassandra docs



Write Path in Cassandra (simplified)
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From the Apache Cassandra docs

First step is durable write to the commit log
(in all databases that offer strong durability)

Memtable is a re-computable
view of the commit log

actions and the persistent SSTables)



Write Path in Cassandra (simplified)
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From the Apache Cassandra docs

First step is durable write to the commit log
(in all databases that offer strong durability)

Memtable is a re-computable
view of the commit log

actions and the persistent SSTables)

Replication to Quorum
before write is acknowledged



Durability of Queryable state
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snapshot
state



Durability of Queryable state
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Event sequence is the ground truth and
is durably stored in the log already

Queryable state
re-computable

from checkpoint and log

snapshot
state Snapshot replication

can happen in the
background



Performance of Flink's State
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window()/
sum()

Source /
filter() /
map()

State index
(e.g., RocksDB)

Events are persistent
and ordered (per partition / key)

in the log (e.g., Apache Kafka)

Events flow without replication or synchronous writes



Performance of Flink's State
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window()/
sum()

Source /
filter() /
map()

Trigger checkpoint Inject checkpoint barrier



Performance of Flink's State
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window()/
sum()

Source /
filter() /
map()

Take state snapshot RocksDB:
Trigger state

copy-on-write



Performance of Flink's State

38

window()/
sum()

Source /
filter() /
map()

Persist state snapshots Durably persist
snapshots

asynchronously

Processing pipeline continues



Conclusion
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Takeaways

 Streaming applications are often not bound by the stream 
processor itself. Cross system interaction is frequently biggest 
bottleneck

 Queryable state mitigates a big bottleneck: Communication 
with external key/value stores to publish realtime results

 Apache Flink's sophisticated support for state makes this 
possible
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Takeaways

Performance of Queryable State

 Data persistence is fast with logs (Apache Kafka)
• Append only, and streaming replication

 Computed state is fast with local data structures and no 
synchronous replication (Apache Flink)

 Flink's checkpoint method makes computed state persistent 
with low overhead
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Go Flink!

42

Low latency

High Throughput

Well-behaved
flow control

(back pressure)

Make more sense of data

Works on real-time
and historic data

True
Streaming

Event Time

APIs
Libraries

Stateful
Streaming

Globally consistent
savepoints

Exactly-once semantics
for fault tolerance

Windows &
user-defined state

Flexible windows
(time, count, session, roll-your own)

Complex Event Processing


