
Stephan Ewen

@stephanewen

The Stream Processor 
as a Database

Apache Flink



2

Streaming technology is enabling the obvious: 
continuous processing on data that is 

continuously produced



Apache Flink Stack

3

DataStream API
Stream Processing

DataSet API
Batch Processing

Runtime
Distributed Streaming Data Flow

Libraries

Streaming and batch as first class citizens.



Programs and Dataflows

4

Source

Transformation

Transformation

Sink

val lines: DataStream[String] = env.addSource(new FlinkKafkaConsumer09(…))

val events: DataStream[Event] = lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.apply(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

Source
[1]

map()
[1]

keyBy()/
window()/
apply()
[1]

Sink
[1]

Source
[2]

map()
[2]

keyBy()/
window()/
apply()
[2]

Streaming
Dataflow



What makes Flink flink?

5

Low latency

High Throughput

Well-behaved
flow control

(back pressure)

Make more sense of data

Works on real-time
and historic data

True
Streaming

Event Time

APIs
Libraries

Stateful
Streaming

Globally consistent
savepoints

Exactly-once semantics
for fault tolerance

Windows &
user-defined state

Flexible windows
(time, count, session, roll-your own)

Complex Event Processing



The (Classic) Use Case
Realtime Counts and Aggregates

6



(Real)Time Series Statistics

7

stream of events realtime statistics



The Architecture

8

collect log analyze serve & store



The Flink Job

9

case class Impressions(id: String, impressions: Long)

val events: DataStream[Event] = 
env.addSource(new FlinkKafkaConsumer09(…))

val impressions: DataStream[Impressions] = events
.filter(evt => evt.isImpression)
.map(evt => Impressions(evt.id, evt.numImpressions)

val counts: DataStream[Impressions]= stream
.keyBy("id")
.timeWindow(Time.hours(1))
.sum("impressions")



The Flink Job

10

Kafka
Source

map()
window()/

sum()
Sink

Kafka
Source

map()
window()/

sum()
Sink

filter()

filter()

keyBy()

keyBy()



Putting it all together

11

Periodically (every second)
flush new aggregates

to Redis



How does it perform?

12

Latency Throughput
Number of

Keys



99th Percentile

Latency (sec)

9

8

2

1

Storm 0.10

Flink 0.10

60 80 100 120 140 160 180

Throughput

(1000 events/sec)

Spark Streaming 1.5

Yahoo! Streaming Benchmark

13

Latency

(lower is better)



Extended Benchmark: Throughput

14

Throughput

• 10 Kafka brokers with 2 partitions each
• 10 compute machines (Flink / Storm)

• Xeon E3-1230-V2@3.30GHz CPU (4 cores HT)
• 32 GB RAM (only 8GB allocated to JVMs)

• 10 GigE Ethernet between compute nodes
• 1 GigE Ethernet between Kafka cluster and Flink nodes



Scaling Number of Users

 Yahoo! Streaming Benchmark has 100 keys only
• Every second, only 100 keys are written to

key/value store

• Quite few, compared to many real world use cases

 Tweet impressions: millions keys/hour
• Up to millions of keys updated per second

15

Number of
Keys



Performance

16

Number of
Keys



The Bottleneck

17

Writes to the key/value
store take too long



Queryable State

18



Queryable State

19



Queryable State

20

Optional, and
only at the end of

windows



Queryable State Enablers

 Flink has state as a first class citizen

 State is fault tolerant (exactly once semantics)

 State is partitioned (sharded) together with the operators 
that create/update it

 State is continuous (not mini batched)

 State is scalable (e.g., embedded RocksDB state backend)

21



Queryable State Status

 [FLINK-3779] / Pull Request #2051 :
Queryable State Prototype

 Design and implementation under evolution

 Some experiments were using earlier versions of the 
implementation

 Exact numbers may differ in final implementation, but order 
of magnitude is comparable

22



Queryable State Performance

23



Queryable State: Application View

24

Application only interested in latest realtime results

Application



Queryable State: Application View

25

Application requires both latest realtime- and older results

Database

realtime results older results

Application Query Service

current time
windows

past time
windows



Apache Flink Architecture Review

26



Queryable State: Implementation

27

Query Client

State
Registry

window()/
sum()

Job Manager Task Manager

ExecutionGraph

State Location Server

deploy

status

Query: /job/operation/state-name/key

State
Registry

window()/
sum()

Task Manager

(1) Get location of "key-partition"
for "operator" of" job"

(2) Look up
location

(3)
Respond location

(4) Query
state-name and key

local
state

register



Contrasting with key/value stores

28



Turning the Database Inside Out

 Cf. Martin Kleppman's talks on 
re-designing data warehousing
based on log-centric processing

 This view angle picks up some of
these concepts

 Queryable State in Apache Flink = (Turning DB inside out)++

29



Write Path in Cassandra (simplified)

30
From the Apache Cassandra docs



Write Path in Cassandra (simplified)

31
From the Apache Cassandra docs

First step is durable write to the commit log
(in all databases that offer strong durability)

Memtable is a re-computable
view of the commit log

actions and the persistent SSTables)



Write Path in Cassandra (simplified)

32
From the Apache Cassandra docs

First step is durable write to the commit log
(in all databases that offer strong durability)

Memtable is a re-computable
view of the commit log

actions and the persistent SSTables)

Replication to Quorum
before write is acknowledged



Durability of Queryable state

33

snapshot
state



Durability of Queryable state

34

Event sequence is the ground truth and
is durably stored in the log already

Queryable state
re-computable

from checkpoint and log

snapshot
state Snapshot replication

can happen in the
background



Performance of Flink's State

35

window()/
sum()

Source /
filter() /
map()

State index
(e.g., RocksDB)

Events are persistent
and ordered (per partition / key)

in the log (e.g., Apache Kafka)

Events flow without replication or synchronous writes



Performance of Flink's State

36

window()/
sum()

Source /
filter() /
map()

Trigger checkpoint Inject checkpoint barrier



Performance of Flink's State

37

window()/
sum()

Source /
filter() /
map()

Take state snapshot RocksDB:
Trigger state

copy-on-write



Performance of Flink's State

38

window()/
sum()

Source /
filter() /
map()

Persist state snapshots Durably persist
snapshots

asynchronously

Processing pipeline continues



Conclusion

39



Takeaways

 Streaming applications are often not bound by the stream 
processor itself. Cross system interaction is frequently biggest 
bottleneck

 Queryable state mitigates a big bottleneck: Communication 
with external key/value stores to publish realtime results

 Apache Flink's sophisticated support for state makes this 
possible

40



Takeaways

Performance of Queryable State

 Data persistence is fast with logs (Apache Kafka)
• Append only, and streaming replication

 Computed state is fast with local data structures and no 
synchronous replication (Apache Flink)

 Flink's checkpoint method makes computed state persistent 
with low overhead

41



Go Flink!

42

Low latency

High Throughput

Well-behaved
flow control

(back pressure)

Make more sense of data

Works on real-time
and historic data

True
Streaming

Event Time

APIs
Libraries

Stateful
Streaming

Globally consistent
savepoints

Exactly-once semantics
for fault tolerance

Windows &
user-defined state

Flexible windows
(time, count, session, roll-your own)

Complex Event Processing


