— .

—
¢ —— e

TR -

/asia Kalavri

vasia@apache.org

@vkalavri

mailto:vasia@apache.org?subject=

STREAM

Q

ALINTHE;THINGS

MODERN STREAMING TECHNOLOGY

éFlink 2D sToRM

: N h > high throughput
fg:c';fning % kqfkq » dynamic topologies

» sub-second latencies

» powerful semantics

- /
@ ; > ecosystem 1ntegration

MORE THAN COUNTING WORDS

o

Complex Event Processing Online Machine Learning Streaming SQL

WHAT ABOUT GRAPH PROCESSING?

WK K

HOW WE'VE DONE GRAPH PROCESSING SO FAR

1. Load: read the graph from disk
and partition it in memory

HOW WE'VE DONE GRAPH PROCESSING SO FAR

1. Load: read the graph from disk
and partition it in memory

2. Compute: read and mutate the
graph state

HOW WE'VE DONE GRAPH PROCESSING SO FAR

1. Load: read the graph from disk
and partition it in memory

2. Compute: read and mutate the
graph state

3. Store: write the final graph
state back to disk

[f what you need
is to analyze a static graph
over and over again

then this model is great!

WHAT'S WRONG WITH THIS MODEL?

> [t is slow
» wait until the computation is over before you see any result
» pre-processing and partitioning

» [t 1s expensive

» lots of memory and CPU required in order to scale

» [t requires re-computation for graph changes

» no efficient way to deal with updates

10

GRAPH STREAMING CHALLENGES

» Maintain the dynamic graph
structure

» Provide up-to-date results with
low latency

» Compute on fresh state only

11

WHAT IFITOLD YoU

’
;
‘A
:
.
. :
.

YOU DON'T NEED TO STORE THE
GRAPH TO ANALYZE THE GRAPH

ACADEMIA TO THE RESCUE

000

» Graph streaming in the 90s-00s
» input fits in secondary storage
» limited memory

» few passes over the input data

» compact graph representations and summaries

13

GRAPH SUMMARIES

000

graph summary @

> spanners

» connectivity, distance

> sparsifiers -

» cut estimation

, algorithm — °~ VAN — algorithm
» neighborhood sketches

14

BATCH CONNECTED COMPONENTS

15

BATCH CONNECTED COMPONENTS

16

BATCH CONNECTED COMPONENTS

17

BATCH CONNECTED COMPONENTS

18

BATCH CONNECTED COMPONENTS

19

Graph Summary: Disjoint Set (Union-Find)

» Only store component IDs and vertex IDs

20

21

22

23

24

25

26

27

28

DISTRIBUTED STREAM CONNECTED COMPONENTS

29

THE BAD NEWS

> A slightly different motivation

> finite graph stored in disk vs. unbounded graph arriving in real-time
» some algorithms assume we know |V|, |E|

» most algorithms designed for single-node execution

30

THE GOOD NEWS

> A quite different reality
» memory is getting bigger
» ... and cheaper

» we know how to design distributed algorithms

31

& GELLY-STREAM

SINGLE-PASS STREAM GRAPH PROCESSING WITH APACHE FLINK

GELLY ON STREAMS

» Static Graphs » Dynamic Graphs

» Multi-Pass Algorithms | > Single-Pass Algorithms

» Full Computations » Approximate Computations

Gelly-Stream

Gelly

Distributed Dataflow
Deployment

33

DISTRIBUTED STREAM CONNECTED COMPONENTS

34

STREAM CONNECTED COMPONENTS WITH FLINK

DataStream<DisjointSet> cc
edgeStream

. keyBy (0)

.timeWindow(Time.of (100, TimeUnit.MILLISECONDS))
. fold(new DisjointSet(), new UpdateCC())

. flatMap(new Merger())

.setParallelism(1);

35

STREAM CONNECTED COMPONENTS WITH FLINK

. keyBy (0)

Partition the edge stream

36

STREAM CONNECTED COMPONENTS WITH FLINK

.timeWindow(Time.of (100, TimeUnit.MILLISECONDS))

Define the merging frequency

37

STREAM CONNECTED COMPONENTS WITH FLINK

. fold(new DisjointSet(), new UpdateCC())

merge locally

38

STREAM CONNECTED COMPONENTS WITH FLINK

. flatMap(new Merger(
.setParallelism(1):

))
merge globally

39

GELLY-STREAM STATUS

» Properties and Metrics » Graph Streaming Algorithms
» Transformations » Connected Components

> Aggregations » Bipartiteness Check

» Discretization » Window Triangle Count

» Neighborhood Aggregations » Triangle Count Estimation

» Continuous Degree Aggregate

40

FEELING GELLY?

» Gelly-Stream Repository

github.com/vasia/gelly-streaming

> A list of graph streaming papers

citeulike.org/user/vasiakalavri/tag/graph-streaming

» A related talk at FOSDEM’16

slideshare.net/vkalavri/gellystream-singlepass-graph-streaming-analytics-with-apache-flink

41

https://github.com/vasia/gelly-streaming
http://www.citeulike.org/user/vasiakalavri/tag/graph-streaming
http://www.slideshare.net/vkalavri/gellystream-singlepass-graph-streaming-analytics-with-apache-flink

— .

—
¢ —— e

TR -

/asia Kalavri

vasia@apache.org

@vkalavri

mailto:vasia@apache.org?subject=

