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MODERN STREAMING TECHNOLOGY

➤ sub-second latencies 

➤ high throughput 

➤ dynamic topologies 

➤ powerful semantics 

➤ ecosystem integration
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MORE THAN COUNTING WORDS

Complex Event Processing Online Machine Learning Streaming SQL
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WHAT ABOUT GRAPH PROCESSING?
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HOW WE’VE DONE GRAPH PROCESSING SO FAR

1. Load: read the graph from disk 
and partition it in memory
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HOW WE’VE DONE GRAPH PROCESSING SO FAR

1. Load: read the graph from disk 
and partition it in memory

2. Compute: read and mutate the 
graph state

3. Store: write the final graph 
state back to disk
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“ If what you need 
is to analyze a static graph 
over and over again 
then this model is great!
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WHAT’S WRONG WITH THIS MODEL?

➤ It is slow 
➤ wait until the computation is over before you see any result 

➤ pre-processing and partitioning 

➤ It is expensive 
➤ lots of memory and CPU required in order to scale 

➤ It requires re-computation for graph changes 
➤ no efficient way to deal with updates
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➤ Maintain the dynamic graph 
structure 

➤ Provide up-to-date results with 
low latency 

➤ Compute on fresh state only
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GRAPH STREAMING CHALLENGES
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ACADEMIA TO THE RESCUE

➤ Graph streaming in the 90s-00s 
➤ input fits in secondary storage 

➤ limited memory 

➤ few passes over the input data 

➤ compact graph representations and summaries
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GRAPH SUMMARIES

➤ spanners 
➤ connectivity, distance 

➤ sparsifiers 
➤ cut estimation 

➤ neighborhood sketches

graph summary

~algorithm algorithmR1 R2
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STREAM CONNECTED COMPONENTS

Graph Summary: Disjoint Set (Union-Find) 

➤ Only store component IDs and vertex IDs
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DISTRIBUTED STREAM CONNECTED COMPONENTS
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THE BAD NEWS

➤A slightly different motivation 
➤ finite graph stored in disk vs. unbounded graph arriving in real-time 
➤ some algorithms assume we know |V|, |E| 
➤ most algorithms designed for single-node execution
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THE GOOD NEWS

➤A quite different reality 
➤ memory is getting bigger 
➤ … and cheaper 
➤ we know how to design distributed algorithms
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GELLY-STREAM 
SINGLE-PASS STREAM GRAPH PROCESSING WITH APACHE FLINK
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GELLY ON STREAMS

DataStreamDataSet

Distributed Dataflow

Deployment

Gelly Gelly-Stream

➤ Static Graphs 

➤ Multi-Pass Algorithms 

➤ Full Computations

➤ Dynamic Graphs 

➤ Single-Pass Algorithms 

➤ Approximate Computations

DataStream
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DISTRIBUTED STREAM CONNECTED COMPONENTS
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STREAM CONNECTED COMPONENTS WITH FLINK

DataStream<DisjointSet> cc = 
  edgeStream 
    .keyBy(0)  
    .timeWindow(Time.of(100, TimeUnit.MILLISECONDS))  
    .fold(new DisjointSet(), new UpdateCC()) 
    .flatMap(new Merger()) 
    .setParallelism(1);
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Partition the edge stream



STREAM CONNECTED COMPONENTS WITH FLINK

DataStream<DisjointSet> cc = 
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Define the merging frequency



STREAM CONNECTED COMPONENTS WITH FLINK
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merge locally



STREAM CONNECTED COMPONENTS WITH FLINK

DataStream<DisjointSet> cc = 
  edgeStream 
    .keyBy(0)  
    .timeWindow(Time.of(100, TimeUnit.MILLISECONDS))  
    .fold(new DisjointSet(), new UpdateCC()) 
    .flatMap(new Merger()) 
    .setParallelism(1);
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merge globally



GELLY-STREAM STATUS

➤ Properties and Metrics 
➤ Transformations 
➤ Aggregations 
➤ Discretization 
➤ Neighborhood Aggregations
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➤ Graph Streaming Algorithms 
➤ Connected Components 
➤ Bipartiteness Check 
➤ Window Triangle Count 
➤ Triangle Count Estimation 
➤ Continuous Degree Aggregate



FEELING GELLY?

➤Gelly-Stream Repository 

github.com/vasia/gelly-streaming 

➤A list of graph streaming papers 

citeulike.org/user/vasiakalavri/tag/graph-streaming 

➤A related talk at FOSDEM’16 

slideshare.net/vkalavri/gellystream-singlepass-graph-streaming-analytics-with-apache-flink 
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https://github.com/vasia/gelly-streaming
http://www.citeulike.org/user/vasiakalavri/tag/graph-streaming
http://www.slideshare.net/vkalavri/gellystream-singlepass-graph-streaming-analytics-with-apache-flink


GRAPHS AS STREAMS
RETHINKING GRAPH PROCESSING IN THE STREAMING ERA

Vasia Kalavri  
vasia@apache.org 

@vkalavri

mailto:vasia@apache.org?subject=

