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MODERN STREAMING TECHNOLOGY
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» sub-second latencies

» powerful semantics
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MORE THAN COUNTING WORDS
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Complex Event Processing Online Machine Learning Streaming SQL



WHAT ABOUT GRAPH PROCESSING?
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HOW WE'VE DONE GRAPH PROCESSING SO FAR

1. Load: read the graph from disk
and partition it in memory

2. Compute: read and mutate the
graph state

3. Store: write the final graph
state back to disk



[f what you need
is to analyze a static graph
over and over again

then this model is great!



WHAT'S WRONG WITH THIS MODEL?

> [t is slow
» wait until the computation is over before you see any result
» pre-processing and partitioning

» [t 1s expensive

» lots of memory and CPU required in order to scale

» [t requires re-computation for graph changes

» no efficient way to deal with updates
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GRAPH STREAMING CHALLENGES

» Maintain the dynamic graph
structure

» Provide up-to-date results with
low latency

» Compute on fresh state only

11



WHAT IFITOLD YoU

’
;
‘A
:
.
. :
.

YOU DON'T NEED TO STORE THE
GRAPH TO ANALYZE THE GRAPH




ACADEMIA TO THE RESCUE

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Graph streaming in the 90s-00s
» input fits in secondary storage
» limited memory

» few passes over the input data

» compact graph representations and summaries
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GRAPH SUMMARIES
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graph summary @

> spanners

» connectivity, distance

> sparsifiers -

» cut estimation

, algorithm — °~ VAN — algorithm
» neighborhood sketches
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BATCH CONNECTED COMPONENTS
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BATCH CONNECTED COMPONENTS
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Graph Summary: Disjoint Set (Union-Find)

» Only store component IDs and vertex IDs
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DISTRIBUTED STREAM CONNECTED COMPONENTS
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THE BAD NEWS

> A slightly different motivation

> finite graph stored in disk vs. unbounded graph arriving in real-time
» some algorithms assume we know |V|, |E|

» most algorithms designed for single-node execution
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THE GOOD NEWS

> A quite different reality
» memory is getting bigger
» ... and cheaper

» we know how to design distributed algorithms
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& GELLY-STREAM

SINGLE-PASS STREAM GRAPH PROCESSING WITH APACHE FLINK




GELLY ON STREAMS

» Static Graphs » Dynamic Graphs

» Multi-Pass Algorithms | > Single-Pass Algorithms

» Full Computations » Approximate Computations

Gelly-Stream

Gelly

Distributed Dataflow
Deployment
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DISTRIBUTED STREAM CONNECTED COMPONENTS
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STREAM CONNECTED COMPONENTS WITH FLINK

DataStream<DisjointSet> cc
edgeStream

. keyBy (0)

.timeWindow(Time.of (100, TimeUnit.MILLISECONDS))
. fold(new DisjointSet(), new UpdateCC())

. flatMap(new Merger())

.setParallelism(1);
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STREAM CONNECTED COMPONENTS WITH FLINK

. keyBy (0)

Partition the edge stream
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STREAM CONNECTED COMPONENTS WITH FLINK

.timeWindow(Time.of (100, TimeUnit.MILLISECONDS))

Define the merging frequency
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STREAM CONNECTED COMPONENTS WITH FLINK

. fold(new DisjointSet(), new UpdateCC())

merge locally
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STREAM CONNECTED COMPONENTS WITH FLINK

. flatMap(new Merger(
.setParallelism(1):

) )
merge globally
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GELLY-STREAM STATUS

» Properties and Metrics » Graph Streaming Algorithms
» Transformations » Connected Components

> Aggregations » Bipartiteness Check

» Discretization » Window Triangle Count

» Neighborhood Aggregations » Triangle Count Estimation

» Continuous Degree Aggregate
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FEELING GELLY?

» Gelly-Stream Repository

github.com/vasia/gelly-streaming

> A list of graph streaming papers

citeulike.org/user/vasiakalavri/tag/graph-streaming

» A related talk at FOSDEM’16

slideshare.net/vkalavri/gellystream-singlepass-graph-streaming-analytics-with-apache-flink
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https://github.com/vasia/gelly-streaming
http://www.citeulike.org/user/vasiakalavri/tag/graph-streaming
http://www.slideshare.net/vkalavri/gellystream-singlepass-graph-streaming-analytics-with-apache-flink
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