
Apache Iceberg
A modern table format for big data

Owen O’Malley @owen_omalley
June 2019

● A Netflix use case and performance results

● Hive tables
○ How large Hive tables work
○ Drawbacks of this table design

● Iceberg tables
○ How Iceberg addresses the challenges
○ Benefits of Iceberg’s design

● How to get started

Contents

Iceberg Performance

June 2019

● Historical Atlas data:
○ Time-series metrics from Netflix runtime systems
○ 1 month: 2.7 million files in 2,688 partitions
○ Problem: cannot process more than a few days of data

● Sample query:

select distinct tags['type'] as type
from iceberg.atlas
where
name = 'metric-name' and
date > 20180222 and date <= 20180228

order by type;

Case Study: Netflix Atlas

● Hive table – with Parquet filters:
○ 400k+ splits, not combined
○ EXPLAIN query: 9.6 min (planning wall time)

● Iceberg table – partition data filtering:
○ 15,218 splits, combined
○ 13 min (wall time) / 61.5 hr (task time) / 10 sec (planning)

● Iceberg table – partition and min/max filtering:
○ 412 splits
○ 42 sec (wall time) / 22 min (task time) / 25 sec (planning)

Atlas Historical Queries

What is a table format?

June 2019

You meant file format, right?

● How to track what files store the table’s data.
○ Files in the table are in Avro, Parquet, ORC, etc.

● Often overlooked, but determines:
○ What guarantees are possible (like correctness)
○ How hard it is to write fast queries
○ How the table can change over time
○ Job performance

No. Table Format.

● Should be specified: must be documented and portable

● Should support expected database table behavior:
○ Atomic changes that commit all rows or nothing
○ Schema evolution without unintended consequences
○ Efficient access like predicate or projection pushdown

● Bonus features:
○ Hidden layout: no need to know the table structure
○ Layout evolution: change the table structure over time

What is a good table format?

Hive Tables

June 2019

● Key idea: organize data in a directory tree
○ Partition columns become a directory level with values

date=20180513/
|- hour=18/
| |- ...
|- hour=19/
| |- 000000_0
| |- ...
| |- 000031_0
|- hour=20/
| |- ...
|- ...

Hive Table Design

● Filter by directories as columns
SELECT ... WHERE date = '20180513' AND hour = 19

date=20180513/
|- hour=18/

| |- ...

|- hour=19/
| |- 000000_0
| |- ...
| |- 000031_0
|- hour=20/

| |- ...

|- ...

Hive Table Design

● HMS keeps metadata in SQL database
○ Tracks information about partitions
○ Tracks schema information
○ Tracks table statistics

● Allows filtering by partition values
○ Filters only pushed to DB for string types

● Uses external SQL database
○ Metastore is often the bottleneck for query planning

● Only file system tracks the files in each partition…
○ No per-file statistics

Hive Metastore

● Provides snapshot isolation and atomic updates
● Transaction state is stored in the metastore
● Uses the same partition/directory layout

○ Creates new directory structure inside partitions
date=20180513/
|- hour=19/
| |- base_0000000/
| | |- bucket_00000
| | |- ...
| | |- bucket_00031
| |- delta_0000001_0000100/
| | |- bucket_00000
| | |- ...

Hive ACID layout

● Table state is stored in two places
○ Partitions in the Hive Metastore
○ Files in a file system

● Bucketing is defined by Hive’s (Java) hash implementation.
● Non-ACID layout’s only atomic operation is add partition
● Requires atomic move of objects in file system
● Still requires directory listing to plan jobs

○ O(n) listing calls, n = # matching partitions
○ Eventual consistency breaks correctness

Design Problems

● Partition values are stored as strings
○ Requires character escaping
○ null stored as __HIVE_DEFAULT_PARTITION__

● HMS table statistics become stale
○ Statistics have to be regenerated manually

● A lot of undocumented layout variants

● Bucket definition tied to Java and Hive

Less Obvious Problems

● Users must know and use a table’s physical layout
○ ts > X⇒ full table scan!
○ Did you mean this?

ts > X and (d > day(X) or (d = day(X) and hr >=
hour(X))

● Schema evolution rules are dependent on file format
○ CSV – by position; Avro & ORC – by name

● Unreliable: type support varies across formats
○ Which formats support decimal?
○ Does CSV support maps with struct keys?

Other Annoyances

Iceberg Tables

June 2019

● Key idea: track all files in a table over time

○ A snapshot is a complete list of files in a table
○ Each write produces and commits a new snapshot

Iceberg’s Design

S1 S2 S3 ...

● Snapshot isolation without locking
○ Readers use a current snapshot
○ Writers produce new snapshots in isolation, then

commit

● Any change to the file list is an atomic operation
○ Append data across partitions
○ Merge or rewrite files

Snapshot Design Benefits

S1 S2 S3 ...

R W

In reality, it’s a bit more
complicated...

● Implements snapshot-based tracking
○ Adds table schema, partition layout, string properties
○ Tracks old snapshots for eventual garbage collection

● Each metadata file is immutable
● Metadata always moves forward, history is linear
● The current snapshot (pointer) can be rolled back

Iceberg Metadata

v1

S1 S2

v2

S1 S2 S3

v3

S2 S3

● Snapshots are split across one or more manifest files
○ A manifest stores files across many partitions
○ A partition data tuple is stored for each data file
○ Reused to avoid high write volume

Manifest Files

v2

S1 S2 S3

m0 m1 m2

● Basic data file info:
○ File location and format
○ Iceberg tracking data

● Values to filter files for a scan:
○ Partition data values
○ Per-column lower and upper bounds

● Metrics for cost-based optimization:
○ File-level: row count, size
○ Column-level: value count, null count, size

Manifest File Contents

● To commit, a writer must:
○ Note the current metadata version – the base version
○ Create new metadata and manifest files
○ Atomically swap the base version for the new version

● This atomic swap ensures a linear history

● Atomic swap is implemented by:
○ A custom metastore implementation
○ Atomic rename for HDFS or local tables

Commits

● Writers optimistically write new versions:
○ Assume that no other writer is operating
○ On conflict, retry based on the latest metadata

● To support retry, operations are structured as:
○ Assumptions about the current table state
○ Pending changes to the current table state

● Changes are safe if the assumptions are all true

Commits: Conflict Resolution

● Use case: safely merge small files
○ Merge input: file1.avro, file2.avro
○ Merge output: merge1.parquet

● Rewrite operation:
○ Assumption: file1.avro and file2.avro are still present
○ Pending changes:

Remove file1.avro and file2.avro
Add merge1.parquet

● Deleting file1.avro or file2.avro will cause a commit failure

Commits: Resolution Example

Design Benefits

● Reads and writes are isolated and all changes are atomic

● No expensive or eventually-consistent FS operations:
○ No directory or prefix listing
○ No rename: data files written in place

● Faster scan planning
○ O(1) manifest reads, not O(n) partition list calls
○ Without listing, partition granularity can be higher
○ Upper and lower bounds used to eliminate files

● Full schema evolution: add, drop, rename, reorder columns

● Reliable support for types
○ date, time, timestamp, and decimal
○ struct, list, map, and mixed nesting

● Hidden partitioning
○ Partition filters derived from data filters
○ Supports evolving table partitioning

● Mixed file format support, reliable CBO metrics, etc.

Other Improvements

● Spark improvements
○ Standard logical plans and behavior
○ Data source v2 API revisions

● ORC improvements
○ Added additional statistics
○ Adding timestamp with local timezone

● Parquet & Avro improvements
○ Column resolution by ID
○ New materialization API

Contributions to other projects

Getting Started with Iceberg

June 2019

● github.com/apache/incubator-iceberg
○ Apache Incubator
○ Contribute with github issues and pull requests

● Supported engines:
○ Spark 2.3.x - data source v2 plug-in
○ Presto
○ Read-only Pig support

● Mailing list:
○ dev@iceberg.apache.org

Using Iceberg

mailto:iceberg-devel@googdev@iceberg.apache.orglegroups.com

● Hive Metastore catalog (PR available)
○ Uses table locking to implement atomic commits

● Python library coming soon
● Arrow support coming soon
● Support for delta files being worked on

Future work

Questions?

omalley@apache.org

June 2019

