
Causality is simple

Carlos Baquero

Univ. Minho & INESC TEC

Portugal

Berlin Buzzwords 2016



Causality is (moderatly) simple

Carlos Baquero

Univ. Minho & INESC TEC

Portugal

Berlin Buzzwords 2016



Causality

Why should I care?



Everything is distributed

“Distributed systems once were the territory of computer
science Ph.D.s and software architects tucked off in a
corner somewhere. Thats no longer the case.”

(2014 http://radar.oreilly.com/2014/05/everything-is-distributed)



Anomalies in Distributed Systems

A buzz, you have a new message, but message is not there yet

Remove your boss from a group, post to it and he sees posting

In LWW + bad clocks, read a value and cannot overwrite it

Assorted inconsistencies



Time

Can’t we use time(stamps) to fix it?



Time

The problem with time is that

(2015 http://queue.acm.org/detail.cfm?id=2745385)



Light speed is causality speed

CC© BY:© Hubble ESA, Flickr



Time is local

CC© BY:© Adam Greig, Flickr



Time needs memory

(Before)
CC© BY:© Centophobia, Flickr



Time needs memory

(After)
CC© BY:© Centophobia, Flickr



Time needs memory

(Before)
CC© BY:© Centophobia, Flickr



Time needs memory

(After)
CC© BY:© Centophobia, Flickr



Its complicated . . .



Causality

(1978 http://amturing.acm.org/p558-lamport.pdf)



Causality

A social interaction

Alice decides to have dinner.

She tells that to Bob and he agrees.

Meanwhile Chris was bored.

Bob tells Chris and he asks to join for dinner.



Causality relation

Events get unique tags (dots), by place name and growing counter

Causally: “Alice wants dinner” ‖ “Chris is bored”
Timeline: “Alice wants dinner” → “Chris is bored”



Causality relation

How to track it?



Causality relation

How to track it? Maybe read Vector Clock entry in Wikipedia?

(2015 https://en.wikipedia.org/wiki/Vector clock)

Maybe start with something simpler: Causal histories



Causal histories

(1994 https://www.vs.inf.ethz.ch/publ/papers/holygrail.pdf)



Causal histories

Collect memories as sets of unique events (dots)

Set inclusion explains causality

{a1, b1} ⊂ {a1, a2, b1}
You are in my past if I know your history

If we don’t know each other’s history, we are concurrent

If our histories are the same, we are the same



Causal histories



Causal histories
Message reception

Receive {a1, a2} at node b with {b1} yields {b1} ∪ {a1, a2} ∪ {b2}



Causal histories
Causality check

Check {a1, a2} → {a1, a2, b1, b2} iff {a1, a2} ⊂ {a1, a2, b1, b2}



Causal histories
Causality check

Check {a1, a2} → {a1, a2, b1,b2} iff {a1, a2} ⊂ {a1, a2, b1,b2}



Causal histories
Faster causality check

Check {a1, a2} → {a1, a2, b1,b2} iff a2 ∈ {a1, a2, b1,b2}



Causal histories

Note en ∈ {e1 . . . en, f1 . . .} implies {e1 . . . en} ⊂ {e1 . . . en, f1 . . .}



Causal histories

Lots of redundancy than can be compressed



Vector clocks

1988 (https://www.vs.inf.ethz.ch/publ/papers/VirtTimeGlobStates.pdf)

(http://zoo.cs.yale.edu/classes/cs426/2012/lab/bib/fidge88timestamps.pdf)



Vector clocks
Compacting causal histories

{a1, a2, b1, b2, b3, c1, c2, c3}
{a 7→ 2, b 7→ 3, c 7→ 3}

Finally a vector, since 〈a, b, c〉 is a continuous sequence

[2, 3, 3]



Vector clocks



Vector clocks
Message reception

Set union becomes join t by point-wise maximum in vectors

Receive [2, 0, 0] at b with [0, 1, 0] yields incb(t([2, 0, 0], [0, 1, 0]))



Vector clocks
Causality check

Check [2, 0, 0]→ [2, 2, 0] iff point-wise check 2 ≤ 2, 0 ≤ 2, 0 ≤ 0



Vector clocks
Faster causality check

Check [2, 0, 0]→ [2, 2, 0] iff 2 ≤ 2



Vector clocks with dots
Decouple dot of last event

Not that easy to code bold in a PL

[2, 0, 0] becomes [1, 0, 0]a2

[2, 2, 0] becomes [2, 1, 0]b2

Now the causal past excludes the event itself

Check [2, 0, 0]→ [2, 2, 0]?

Check [1, 0, 0]a2 → [2, 1, 0]b2 iff dot a2 index 2 ≤ 2



Registering relevant events

Not always important to track all events

Track only change events in data replicas

Applications in:

File-Systems
Databases
Version Control



Dynamo

Causally tracking of write/put operations

(http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf)



Causal histories with only some relevant events



Causal histories with only some relevant events

Relevant events are marked with a • and get an unique tag/dot

Other events get a ◦ and don’t add to history



Causal histories with only some relevant events

Concurrent states {a1} ‖ {b1} lead to a • marked merge on join

Causally dominated state {} → {a1, b1, b2} is simply replaced



Causal histories with versions not immediately merged

Versions can be collected and merge deferred

Only when merging a new • is needed to reflect the state change



Version vectors

(1983 http://zoo.cs.yale.edu/classes/cs422/2013/bib/parker83detection.pdf)



Version vectors



Causality tracking mechanisms



Closing notes

Causality is important because time is limited

Causality is about memory of relevant events

Causal histories are very simple encodings of causality

Practical mechanisms (VCs, VVs, DVVs) do efficient encoding



Closing notes

When faced with a new design or mechanism: Try to think and
translate back to a simple causal history.

(2016 http://queue.acm.org/detail.cfm?id=2917756)



Closing notes, questions?

When faced with a new design or mechanism: Try to think and
translate back to a simple causal history.

(2016 http://queue.acm.org/detail.cfm?id=2917756)

Email: cbm@di.uminho.pt, Twitter: @xmal, GitHub: CBaquero


