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Why should | care?



Everything is distributed

“Distributed systems once were the territory of computer
science Ph.D.s and software architects tucked off in a
corner somewhere. Thats no longer the case.”

(2014 http://radar.oreilly.com/2014 /05 /everything-is-distributed)



Anomalies in Distributed Systems

m A buzz, you have a new message, but message is not there yet
m Remove your boss from a group, post to it and he sees posting
m In LWW + bad clocks, read a value and cannot overwrite it

m Assorted inconsistencies

Favorited 3 times

- Carlos Baquero
1 @xmal
i 2= Robert Harper -
@existentialtype
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Can't we use time(stamps) to fix it?



Time

The problem with time is that

Distributed Computing

March 10, 2015
Volume 13, issue 3 PDF

There is No Now

Problems with simultaneity in distributed systems

Justin Sheehy
"Now."

The time elapsed between when | wrote that word and when you read it was at
least a couple of weeks. That kind of delay is one that we take for granted and
don't even think about in written media.

(2015 http://queue.acm.org/detail.cfm?id=2745385)



Light speed is causality speed

(@) Hubble ESA, Flickr



Time is local

© Adam Greig, Flickr




Time needs memory

(Before)

© Centophobia, Flickr



Time needs memory

© Centophobia, Flickr



Time needs memory

(Before)
© Centophobia, Flickr




Time needs memory

(After)
© Centophobia, Flickr




lts complicated . ..

#Causality is #Reality

VIP Coaching ©coaching_vip - A
A different perception of time



Causality

Operating R. Stockton Gaines
Systems Editor

Time, Clocks, and the
Ordering of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

The concept of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed
algorithm is given for synchronizing a system of logical
clocks which can be used to totally order the events.
The use of the total ordering is illustrated with a
method for solving synchronization problems. The
algorithm is then specialized for synchronizing physical
clocks, and a bound is derived on how far out of
synchrony the clocks can become.

Key Words and Phrases: distributed systems,
computer networks, clock synchronization, multiprocess
Systems

CR Categories: 4.32, 5.29

(1978 http://amturing.acm.org/p558-lamport.pdf)



Causality

A social interaction

m Alice decides to have dinner.

m She tells that to Bob and he agrees.
m Meanwhile Chris was bored.

m Bob tells Chris and he asks to join for dinner.



Causality relation

Events get unique tags (dots), by place name and growing counter

0 az ay

node A(lice} ==rreei@ °

Dinner? \
b, b, by
[ ] -

node B(ob) ==::----@

Yes, let's do it \
[ e "
L F oooooonoo

node C(hris) ==+-=-:-®

Bored... Can I join?

time

Causally: “Alice wants dinner” || “Chris is bored”
Timeline: “Alice wants dinner” — “Chris is bored”



Causality relation

How to track it?



Causality relation

How to track it? Maybe read Vector Clock entry in Wikipedia?

Partial ordering property [edit)
Vector clocks allow for the partial causal ordering of events. Defining the following:

«» VC(z) denotes the vector clock of event -, and 1/ C'( ') . denotes the component of that clock for process 2.

s VC(z) < VCO(y) <= Vz[VC(z). < VC(y)| A [VC(z)s < VC(y)-]

« In English: V C()is less than V C(y), if and only it VV C() . is less than or equal to IV C'(y) . for all process indices 2, and at least one of those
relationships is strictly smaller (thatis, V C'(z) .. < V C(y)-0-

« & — Y denotes that event = happened before event Y. It is defined as: if £ — ¥, then VC(;) < VC(y)
Properties:

< 1V C(a) < VC(b).theng — b

« Antisymmetry: it VC'(a) < VC'(b). then =V C'(b) < VC(a)

« Transitivity: ifVC(q) < VC(b)and VC(b) < VC(C), then VC(a) < VC(p)or ifq — bandph — ¢, thena — ¢
Relation with other orders:

« Let RT'(r) be the real time when event z occurs. ItV C'(a) < VC'(b), then RT'(a) < RT'(b)

o Let C’(j) be the Lamport timestamp of event . If VC’(a) < VC’([)), then C(a) < C(b)

(2015 https://en.wikipedia.org/wiki/Vector_clock)

Maybe start with something simpler: Causal histories



Causal histories

D ing Causal Relationships in Distributed Computations:
In Search of the Holy Grail

Reinhard Schwarz.

Department of Computer Science, University of Kaiserslautern,
PO. Box 3049, D - 67653 Kaiserslautern, Germany
schwarz@informatik.uni-kl.de

Friedemann Mattern

Department of Computer Science, University of Saarland
Im Stadtwald 36, D - 66041 Saarbriicken, Germany
mattern@cs.uni-sb.de

Abstract: The paper shows that characterizing the causal relationship between significant
events is an important but non-trivial aspect for understanding the behavior of distributed
programs. An introduction to the notion of causality and its relation 1o logical time is
given; some ntal results concerning the characterization of causality are pre-
sented. Recent work on the detection of causal relationships in distributed computations
is surveyed. The issue of observing distributed computations in a causally consistent way
and the basic problems of detecting global predicates are discussed. To illustrate the
major difficulties, some typical monitoring and debugging approaches are assessed, and
it is demonstrated how their feasibility is severely limited by the fundamental problem to
master the complexity of causal relationships.

Keywords: Distributed Computation, Causality, Distributed System, Causal Ordering,
Logical Time, Vector Time, Global Predicate Detection, Distributed Debugging, Times-
tamps

(1994 https://www.vs.inf.ethz.ch/publ/papers/holygrail.pdf)



Causal histories

Collect memories as sets of unique events (dots)

Set inclusion explains causality
L {317 bl} C {ala a, bl}
You are in my past if | know your history

If we don't know each other’s history, we are concurrent

If our histories are the same, we are the same



Causal histories

{a) {ay, 2} [ay, a2 a5}
.. ™ @ srrsmmssssssmmsannnan

{b1} \ [ay, @y by, by, b}
T} @ "mmssssssmssssssEmmsEEEsamn

{on, @z, by, by} \
{c1) {ey, €2l
]

nodeC rovsmnne @ ssrnsaEmsEmEnanEn
[y, @y, by, by, by, €1, €5, €5}

node A eereees

nodeB -eee--

time



Causal histories

Message reception

{al) {ay, ;) [oy, a2 a5}
.. ™ | 0OOOCO0D000OCO0000000

{bJ \ {e, G by, by, ]
.. @ semssssssesssssssmmssEsnan

{on, @y, by, by} \
{cl) {ey, €2l
[}

nodeC rovsmnne @ ssnnsaEmsEmEnaEn
{on, @z, by, by, bs, €1, 03, €3}

node A :-xeese-

“odeB ImEEamms

time

Receive {a1, az} at node b with {b;1} yields {b1} U {a1,a2} U {bo}



Causal histories

Causality check

{al) {ay, ;) [oy, a2 a5}
.. ™ | 0OOOCO0D000OCO0000000

{bJ \ {e, G by, by, ]
.. @ semssssssesssssssmmssEsnan

{on, @y, by, by} \
{cl) {ey, €2l
[}

nodeC rovsmnne @ ssnnsammnEmEnn
{on, @z, by, by, bs, €1, 03, €3}

node A :-xeese-

“odeB ImEEamms

time

Check {81, 32} — {31, an, bl, bz} iff {31, 32} C {31, ar, bl, bz}



Causal histories

Causality check

{al) {ay, ;) [oy, a2 a5}
.. ™ | 0OOOCO0D000OCO0000000

{bJ \ {e, G by, by, ]
.. @ semssssssesssssssmmssEsnan

{on, @y, by, by} \
{cl) {ey, €2l
[}

nodeC rovsmnne @ ssansammEEmnnan
{on, @z, by, by, bs, €1, 03, €3}

node A :-xeese-

“odeB ImEEamms

time

Check {a1,a2} — {a1, a2, b1,ba} iff {a1,a@2} C {a1, a2, b1,ba}



Causal histories

Faster causality check

{al) {ay, ;) [oy, a2 a5}
.. ™ | 0OOOCO0D000OCO0000000

{bJ \ {e, G by, by, ]
.. @ semssssssesssssssmmssEsnan

{on, @y, by, by} \
{cl) {ey, €2l
[}

nodeC rovsmnne @ sannsammnanns
{on, @z, by, by, bs, €1, 03, €3}

node A :-xeese-

“odeB ImEEamms

time

Check {a1,a2} — {a1, a2, b1, ba} iff ax € {a1, a2, b1, by}



Causal histories

{al) {ay, ;) [oy, a2 a5}
. ™ | 0OOOCO0D000OCO0000000

{bJ \ {e, G by, by, ]
. @ semssssssesssssssmmssEsnan

nodeB --ee-- ©

{on, @y, by, by} \
{cl) {ey, €2l
LIRT ] L]

@ sinassmmEamEnaEm
[an, ag, by, by, by, 01, €3, C5)

node A ---e-

nodeC seess

time

Note e, € {e1...en,f1...} implies {e1...en} C{e1...en, ...}



Causal histories

{al) {ay, ;) [oy, a2 a5}
. ™ ' 00OOCO0N0000CO000000000000000000000000

(b \ (o, @, by, bz by}
@ @ smmssssssssssssssmmssmnsEms

nodeB --ee-- ©

{on, @y, by, by} \
{cl) {ey, €2l
LIRT ] L]

@ sinnssmmnans
{on, @z, by, by, bs, €1, 03, €3}

node A ---e-

nodeC ssess

time

Lots of redundancy than can be compressed



Vector

Virtual Time and Global States of Distributed Systems *

Fricdemann Mattern |

Depasment o Prr—

Abstract view of an ideal
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Timestamps in Message-Passing Systems That Preserve the Partial Ordering
Colin J. Fid

Depariment of Computer Science, Australian National University, Canberra, ACT

ABSTRACT

concurrent programming, message-passng, timestamps, logial clocks

Keywords and phra
CR categorios: D.1

3
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1988 (https://www.vs.inf.ethz.ch/publ/papers/Virt TimeGlobStates.pdf)
(http://zo00.cs.yale.edu/classes/cs426/2012/lab/bib/fidge88timestamps.pdf)




Vector clocks

Compacting causal histories

m {a1, 3, b1, by, b3, c1, &2, c3}
m{a—2,b—3,c— 3}
Finally a vector, since (a, b, ¢) is a continuous sequence

m [2,3,3]



Vector clocks

[1,0,0] [2.0,0] [3,00]
Y ) . - -

[0,1,01 \ [2,3,0]
.l .-

[220] \

node G '=eermeer@ Y @ rrremmmmrsreamas
[001] [0,02] [2.33]

node A -e-e--

nodeB ------

time



Vector clocks

Message reception

Set union becomes join U by point-wise maximum in vectors

[1,0,0] [2.0,0] [2.00]

node A -reeeeen@ - @ srsmsssssssmssssssEmEEssEsEssmsEsEamEs
[0,1,01 \ [2,3,0]

nodeB --eeee--@ - @ sssmscussmsmssssassmssssamms

[220] \

nOdEc IEETTTTTRY ) [} @ "srrmmsmssnnamEn

[0,0.1] [00.2] [2.3.3]
time

Receive [2,0,0] at b with [0, 1, 0] yields incy(LI([2, 0, 0], [0, 1,0]))



Vector clocks

Causality check

[1,0,0] [2,0,0] [2,0,0]
node A ‘=eaeeee-@ [ @ sremassssssmmsssssEmssssEsEmsmsssEamss
[0.1,0) \ [2.3.0)
nodeB --eeee--@ - @ mssmscussmsmssssassmsssssmms
[220] \
nodeC ':emrmer-@ - @ "rrrsssmsssssmas
[0,01] [0,0,2] [23.3

time

Check [2,0,0] — [2,2,0] iff point-wise check 2 <2,0<2,0<0



Vector clocks

Faster causality check

[1,0,0] [2,0,0] [2,0,0]
node A ‘=eaeeee-@ [ @ sremassssssmmsssssEmssssEsEmsmsssEamss
[0.1,0) \ [2.3.0)
nodeB --eeee--@ - @ mssmscussmsmssssassmsssssmms
[220] \
nodeC ':emrmer-@ - @ "rrrsssmsssssmas
[0,01] [0,0,2] [23.3

time

Check [2,0,0] — [2,2,0] iff 2 < 2



Vector clocks with dots

Decouple dot of last event

m Not that easy to code bold in a PL
m [2,0,0] becomes [1,0,0]az
[2,2,0] becomes [2,1,0]b2

m Now the causal past excludes the event itself
m Check [2,0,0] — [2,2,0]?
m Check [1,0,0]ax — [2,1,0]by iff dot a index » <2



Registering relevant events

m Not always important to track all events

m Track only change events in data replicas
m Applications in:

m File-Systems
m Databases
m Version Control



Dynamo

Causally tracking of write/put operations

(http://www.allthingsdistributed.com /files/amazon-dynamo-sosp2007.pdf)

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

[

D1 ([Sx,1])
l o
hardiod by Sx
D2 ([Sx,2]))
o writo
D3 ([Sx.2].[Sy.1]) D4 ([Sx.2],[Sz.1])
\ / reconcied
andwihon
o

D5 ([Sx,3],[Sy,1][Sz,1])

Figure 3: Version evolution of an object over time,

Amazon.com

object. In practice, this is not likely because the writes are usually
handled by one of the top N nodes in the preference list. In case of
network partitions or multiple server failures, write requests may
be handled by nodes that are not in the top N nodes in the
preference list causing the size of vector clock to grow. In these
Scenarios, it s desirable to limit the size of vector clock. To this

Dynamo employs the following clock fruncation scheme:
Along with each (node, counter) pair, Dynamo stores a timestamp
that indicates the last time the node updated the data item. When
the number of (node, counter) pairs in the vector clock reaches a
threshold (say 10), the oldest pair is removed from the clock.
Clearly, thistruncation scheme can lead to inefficiencies in
reconciliation as the descendant relationships cannot be derived
accurately. However, this problem has not surfaced in production
and therefore this issue has not been thoroughly investigated.

4.5 Execution of get () and put () operations

Any storage node in Dynamo is eligible to receive client get and
put operations for any key. In this section, for sake of simplicity,
we describe how these operations are performed in a failure-free
environment and in the subsequent section we describe how read




Causal histories with only some relevant events

node A rvsmmnnns

nodeB :+:==-ee-@

node C srsreus

{a))

(b

{en, by, by} \
[s]

=

time



Causal histories with only some relevant events

Relevant events are marked with a e and get an unique tag/dot

{a] {ag {on, a5}
. (o] [ ] renan

{b} \ [ [an, by, bo}
o

node A rvrmmnns

node B ‘rreereec@

node C 'rremieni0 o [SRTTTTITIITErr T
{1 {1} {ay, by, ba}

time

Other events get a o and don't add to history



Causal histories with only some relevant events

Concurrent states {a;1} || {b1} lead to a e marked merge on join

{a] {ag {on, a5}
. (o] [ ]

{b.} \ | [, by, by}
.. (=]

-
{ay, by, by} \
nodeC r1rmmunnn [o]

O sremmsassnnEmnns
{1 {1} {ay, by, ba}

node A rsesmuns

node B rremmeee

time

Causally dominated state {} — {a1, b1, bo} is simply replaced



Causal histories with versions not immediately merged

Versions can be collected and merge deferred

{all fa,} {ay, a5}

node A srrnemns - (o] @ SErnaEEEEEEEEEEEEEEREEEEEEREEREEERERR
(b)) \ fa, b by [y, by, by

nodeB sereeees - o ™ () mmssssmsmmsssnssmnnnns

{a).[by) U \

nodeC =rsssmsas (] e} O semnsmmnnnn

1 11 {en, by, by}
time i

Only when merging a new e is needed to reflect the state change



Version vectors

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-9, NO. 3, MAY 1983

Detection of Mutual Inconsistency in
Distributed Systems

D.STOTT PARKER, JR., GERALD J. POPEK, GERARD RUDISIN, ALLEN STOUGHTON,
BRUCE J. WALKER, EVELYN WALTON, JOHANNA M. CHOW,
DAVID EDWARDS, STEPHEN KISER, AND CHARLES KLINE

Abstract—Many _distributed systems are now being developed to
provide users with convenient access to data via some kind of com-
munications network. In many cases it is desirable to keep the system
functioning even when it is partitioned by network failures. A serious
problem in this context is how one can support redundant copies of
resources such as flles (for the sake of rliability) while simultaneously
‘monitoring their mutual consistency (the equality of multiple copies).

ion vectors and origin points, is presented and
shown to detect single file, multiple copy mutual inconsistency effec-
tively. The approach has been used in the design of LOCUS, a local
network operating system at UCLA.

Index Terms—Availat ted systems, mutual consistency,
network failures, i poitoning epicated 4.

‘multiple copies of a file exist, the system must ensure the
mutual consistency of these copies: when one copy of the file
is modified, all must be modified correspondingly before an
independent access can take place.

Much has been written about the problem of maintaining
consistency in distributed systems, ranging from intemal
consistency methods (ways to keep a single copy of a resource
looking consistent to multiple processes attempting to access it
concurrently) to various ingenious updating algorithms which
ensure mutual consistency [1], [2], [6], [8]. [16], ete. We
concern ourselves here with mutual consistency in the face of
network partitioning, ic., the situation where various sites in
the network cannot communicate with each other for some
length of time due to network failures or ste crashes. This is a
very real problem in most networks. For example, even in the
Ethernet [10], gateways can be inoperative for significant
lengths of time, while the Ether segments they nomally

mmant anarnta crrastisr

(1983 http://zoo.cs.yale.edu/classes/cs422 /2013 /bib/parker83detection.pdf)




Version vectors

10,0 10, 0,
node A uuu.[u. } [OO O] [2-[][-]J-----u--uu.uuuuuuuuuu..
[0,10] \ LI [1.20]
nodeB 'rmsnie L] O sssnnsmmsssEnEmmEERRRRmEEnS
[1.2,0] \
node C 'osmsnnnsd e} O sssmmssnsnsmnnns
[0,00] [0,0,0] [1.20]




Causality tracking mechanisms




Closing notes

Causality is important because time is limited

Causality is about memory of relevant events

Causal histories are very simple encodings of causality
Practical mechanisms (VCs, VVs, DVVs) do efficient encoding



Closing notes

When faced with a new design or mechanism: Try to think and
translate back to a simple causal history.

Programming Languages
April 12, 2016
Volume 14, issue 1 PDF

Why Logical Clocks are Easy

Sometimes all you need is the right language.

Carlos Baquero and Nuno Preguica

(2016 http://queue.acm.org/detail.cfm?id=2917756)



Closing notes, questions?

When faced with a new design or mechanism: Try to think and
translate back to a simple causal history.

Programming Languages

April 12, 2016
Volume 14, issue 1 T PDF

Why Logical Clocks are Easy

Sometimes all you need is the right language.

Carlos Baquero and Nuno Preguica

(2016 http://queue.acm.org/detail.cfm?id=2917756)

Email: cbm@di.uminho.pt, Twitter: @xmal, GitHub: CBaquero



