
© 2019 Ververica

Stephan Ewen

Co-creator and PMC of Apache Flink

Ververica (formerly dataArtisans, now part of Alibaba Group)

Towards Flink 2.0 –

Unifying the Batch and Streaming Stack

© 2019 Ververica

Alternative Talk Titles

Batch is a special case of something

Why is there still DataSet and DataStream?

What's taking you folks so long?

If all you have is a Squirrel, everything looks like a stream

© 2019 Ververica

This is talk is based on joint work with many

members of the Apache Flink community

Xiaowei, Aljoscha, Timo, Dawid, Shaoxuan, Kurt, Guowei, Becket, Jincheng, Fabian,

Till, Andrey, Gary, Chesnay, Piotr, Stefan, Zhijiang, Bowen, Haibo, etc.

And many others…

This is a snapshot of the state of design

discussion and work-in-progress.

Some things may change as discussions evolve.

© 2019 Ververica

Stateful Computations over Data Streams

Apache Flink

© 2019 Ververica

more lag time

Batch

Processing

Continuous

Processing

Event-driven

Applications

Transactional

Applications

more real time

Data

Pipelines

Streaming

Analytics

Computing over Data Streams

© 2019 Ververica

1.7B10K 10K
Sub-

Second 100TB

machines queries throughput latency state size

events / sec

Stream Processing based on

Apache Flink at Alibaba

Performance during "Singles Day"

© 2019 Ververica7

Some Apache Flink Users

Source: https://flink.apache.org/poweredby.html and https://sf-2019.flink-forward.org/speakers

https://flink.apache.org/poweredby.html
https://sf-2019.flink-forward.org/speakers

© 2019 Ververica

The Relationship between

Batch and Streaming

© 2019 Ververica9

Everything is a Stream

Streams Of Records in a Log or MQ

[e.g., Apache Kafka or AWS Kinesis …]

© 2019 Ververica10

Everything is a Stream

Stream of Requests/Responses to/from Services

Service

DB

→ event sourcing architecture

GET /a/b POST /b/c PUT /e/f 200 404 200 200 403

© 2019 Ververica11

Everything is a Stream

Stream of Rows in a Table or in Files

2016-3-1

12:00 am

2016-3-1

1:00 am

2016-3-1

2:00 am

2016-3-11

11:00pm

2016-3-12

12:00am

2016-3-12

1:00am

2016-3-11

10:00pm

2016-3-12

2:00am

2016-3-12

3:00am
…

© 2019 Ververica12

A batch is a Bounded Stream

Stream of Rows in a Table or in Files

2016-3-1

12:00 am

2016-3-1

1:00 am

2016-3-1

2:00 am

2016-3-11

11:00pm

2016-3-12

12:00am

2016-3-12

1:00am

2016-3-11

10:00pm

2016-3-12

2:00am

2016-3-12

3:00am
…

a batch

© 2019 Ververica13

Batch Processing is a special case of Stream Processing

A batch is just a bounded stream.

That is about 60% of the truth…

© 2019 Ververica14

The remaining 40% of the truth

The (Event-time Low) Watermark

… never seen this in

Batch Processing,

though.

© 2019 Ververica15

The remaining 40% of the truth

Continuous

Streaming
Batch

Processing

Data is incomplete

Latency SLAs

Completeness and

Latency is a tradeoff

Data is as complete

as it gets within the job

No Low Latency SLAs

© 2019 Ververica16

Stream Real-time Processing

older more recent

watermark

unprocessed

© 2019 Ververica17

Stream Re-Processing

older more recent

watermark

unprocessed

© 2019 Ververica18

Batch Processing

older more recent

watermark

unprocessed

© 2019 Ververica19

Batch vs. Stream Processing

Continuous

Streaming
Batch

Processing

Watermarks to model

Completeness/Latency tradeoff No Watermarks

Incremental results &

Proc.-Time Timers

Results at end-of-

program only

In-receive-order

ingestion with low parallelism

Massively parallel

out-of-order ingestion

© 2019 Ververica

What does that mean for

(1) A unified Batch/Streaming

Data Processing Runtime

(2) Unified Batch- and

Streaming APIs

The remainder of this talk

© 2019 Ververica

Stream- and Batch-

Processing in the Runtime

© 2019 Ververica22

Exploiting the Batch Special Case

Planner/Optimizer

Continuous Operators

Streaming

Scheduler Rules

Additional Bounded

Operators

Additional

Scheduling Strategies

if (bounded && non-incremental)

activates additional

optimizer choices

Core operators,

cover all cases

Optimized operators

for subset of cases

© 2019 Ververica23

Scheduling Strategies

•Build pipelined regions
– Incremental results: everything pipelines

– Non-incremental results: break pipelines once in a while

•Recovery: Restart the pipelined region from latest checkpoint (or beginning)
– replay input since checkpoint or beginning

✘✘

© 2019 Ververica24

Streaming versus Batch Join

© 2019 Ververica25

Streaming versus Batch Join

2x RocksDB

LSM-Trees 1x Hybrid Hash Join

bounded/

unbounded

incremental

results

only on

bounded data

batch results

no checkpoints

order-of-magnitude fastermore general

© 2019 Ververica26

Streaming versus Batch Join

push-based

(latency/checkpoints)

pull-based

(data flow control)

order-of-magnitude fastermore general

© 2019 Ververica27

Push-based and Pull-based Operators

accept data from any input immediately

(like actor messages)

minimize latency, supports

checkpoint alignment

pull data from one input at a time

(like reading streams)

control over data flow,

high-latency, breaks checkpoints

pull() pull()

© 2019 Ververica28

Selectable Push-based Operators

subscribe to inputs (select)

and receive pushed events

➔ Operators control data flow by selecting active data paths

➔ Among active data paths, fully asynchronous data flow

driven by network, data sources (and timers)

similar to non-blocking-I/O model

Java NIO, Linux Epoll, or Select
select() select()

© 2019 Ververica29

Selectable Push-based Operators

subscribe to inputs (select)

and receive pushed events

similar to non-blocking-I/O model

Java NIO, Linux Epoll, or Select

➔ Input selection affects network channel credit assignment.

➔ Possible to process checkpoints through deselected

channels (not yet implemented)

© 2019 Ververica30

Flink 1.9 Table API and Merging Blink

Table API / SQL

Flink Query Processor

Flink Task Runtime

DataSet StreamTransformation

Driver

(Pull)

StreamOperator

(selectable push)

Blink Query Processor

batch env. stream env. batch & stream

© 2019 Ververica

Stream- and Batch-

Processing in the APIs

© 2019 Ververica32

Flink's future API Stack

Stream Operator & DAG API

Runtime

DataSet
(deprecated)

DataStream Table / SQL

Still possible to mix and

match within a program

© 2019 Ververica33

APIs for Analytical Processing and Applications

Applications
(physical)

Analytical Processing
(declarative)

DataStream API SQL / Table API

Types are Java / Scala classes Logical Schema

Transformation Functions Declarative Language (SQL, Table DSL)

Explicit State and Time Automatic Optimization

© 2019 Ververica34

SQL / Table API – Batch style (fix data set as input)

SQL

Query

Batch Query

Execution

SELECT
room,
TUMBLE_END(rowtime, INTERVAL '1' HOUR),
AVG(temperature)

FROM
sensors

GROUP BY
TUMBLE(rowtime, INTERVAL '1' HOUR), room

© 2019 Ververica35

SQL / Table API – Streaming Data Case

SELECT
room,
TUMBLE_END(rowtime, INTERVAL '1' HOUR),
AVG(temperature)

FROM
sensors

GROUP BY
TUMBLE(rowtime, INTERVAL '1' HOUR), room

SQL

Query

Interpret Stream

as Table

Incremental

Query Execution output result

changes as stream

update database

with changes

© 2019 Ververica

One SQL to Rule Them All – a Syntactically Idiomatic Approach to

Management of Streams and Tables

More Details also

Fabian Hüske, Tyler Akidau

Beam Summit Europe – Thursday June 19th

© 2019 Ververica37

SQL / Table API – Temporal Joins Example

SELECT tf.time
tf.price * rh.rate as conv_fare

FROM taxiFare AS tf

LATERAL TABLE (Rates(tf.time)) AS rh

WHERE tf.currency = rh.currency;

© 2019 Ververica38

SQL / Table API – Event Pattern Matching Example

© 2019 Ververica39

DataStream API

•DataStream is already supporting Bounded and Unbounded Streams

• Introduce BoundedDataStream and non-incremental mode to exploit

optimizations for bounded data

•Watermarks "jump" from -∞ to +∞ at end of program

•Processing time timers deactivated or deferred (end of key)

•Cannot offer this mode before runtime supports batch-style execution.

This is not a final design, it is

an intermediate state of

still informal design discussions

© 2019 Ververica40

DataStream Sources - Flink Improvement Proposal (FLIP) - 27

•Ongoing work to unify the data source API between batch and streaming

•Current draft is based on input splits and non-blocking (async) readers

•Synchronous implementations for common source threading models

•Split/partition processing in-/out-of -order

• Further goals
– common checkpointing, per-partition watermarks,

event-time idleness, event-time alignment

https://cwiki.apache.org/confluence/display/
FLINK/FLIP-27%3A+Refactor+Source+Interface

https://cwiki.apache.org/confluence/display/FLINK/FLIP-27%3A+Refactor+Source+Interface

© 2019 Ververica

What else is the Flink Community

currently working on?

© 2019 Ververica

Cross-Batch-Streaming

Machine Learning

More powerful incremental

streaming SQL runtime

Python Table API

Hive support

…and lot's more

Querying state and snapshots

Interactive multi-job programs

Atomic stop-with-savepoint

a big documentation overhaul

© 2019 Ververica43

Thank you!

If you liked this, engage with the

Apache Flink® community

• Try Flink and help us improve it

• Contribute docs, code, tutorials

• Share your use cases and ideas

• Join a Flink Meetup

• Come to Flink Forward (https://www.flink-forward.org/)

@StephanEwen @ApacheFlink @VervericaData

https://flink.apache.org/

