
Spark and Flink running
scalable in Kubernetes

Frank Conrad

Architect @ apomaya.com

scalable efficient low latency processing

�1

Copyright © 2018 Apomaya

motivation, use case

• run (external, unknown trust) customer spark / flink code

• multi tenant cluster environment

• huge variation of job characteristics

• predictive job runtimes

!2

Copyright © 2018 Apomaya

why kubernetes
• container, deployment, orchestration

• dynamic cluster

• support good CI/CD

• help to try out

• help leverage scale of map-reduce pattern in cloud

• better cloud, provider, vendor agnostic

• leverage better cloud charge by used resources and time

• simpler version handling / migration

!3

Copyright © 2018 Apomaya

jobs

• wide spread of needed memory / CPU / storage

• different SLA

• predictable job runtime

• different versions of spark / flink

• weekly, monthly,… processing, reprocessing, catchup

!4

Copyright © 2018 Apomaya

multi tenant == isolation
• UI / API

• runtime

• network (CNI calico)

• storage

• logging / monitoring

• security

!5

Copyright © 2018 Apomaya

the challenges of spark / flink with kubernetes

• cluster (manger) on top of cluster (manager)

• kubernetes drain, rescheduling,…

• produce challenges to failure recovery of spark / flink

• there are designed for single node failures but not rolling updates…

• kubernetes don’t like long running non restartable (statefull) apps

• multi tenant support is basic, a group is working on it (kubernetes-wg-multitenancy)

• immutable system images

• updates need redeployment-> rescheduling

!6

Copyright © 2018 Apomaya

a solution
• on demand deployment of spark/flink cluster, one per job

• job as first citizens

• each job get his right sized cluster

• individual tuning possible

• monthly, quarterly jobs, reprocessing, catchup have less impact to normal processing

• helper app

• create / destroy spark / flink cluster (deployment)

• submit, monitor job

• report, integrate with higher level workflow (airflow,…)

• optional proxy UI / API for tenant usage

!7

Copyright © 2018 Apomaya

pros
• good separation of tenant

• real dynamic on demand spark/flink cluster

• allow wide tuning specific for job

• CPU/memory / storage

• SLA (use spot instances)

• easy run different version of spark/flink

• like “container“ for spark/flink jobs

• helper app can address kubernetes issues like drains (operator pattern)

!8

Copyright © 2018 Apomaya

cons

• startup time of job depend on cloud provider

• overhead of more spark/flink infrastructure processes

• development of helper app, helm chart

• HDFS and shuffle

!9

Copyright © 2018 Apomaya

spark 2.3 kubernetes integration

• the helper app: spark-submit, for many use cases

• deploy cluster, no helm need

• run driver

• https://spark.apache.org/docs/2.3.0/running-on-kubernetes.html

• https://github.com/apache-spark-on-k8s/spark

!10

Copyright © 2018 Apomaya

helper app
• is the controller of the job and integrator to higher level workflow

• long running stream

• suspend / resume support

• trigger other on demand resource

• HDFS

• could based operator pattern

• https://coreos.com/blog/introducing-operators.html

• https://blog.couchbase.com/kubernetes-operators-game-changer/

!11

https://coreos.com/blog/introducing-operators.html
https://blog.couchbase.com/kubernetes-operators-game-changer/

Copyright © 2018 Apomaya

kubernetes helm
• helm chart

• templating deployment

• connect / deploy zookeeper,..

• can use all available kubernetes options

• local volumes

• emptyDir (specify size)

• Persistent Volumes

• local

• EBS

!12

Copyright © 2018 Apomaya

kubernetes auto scale
• cluster auto scaler

• needed for real dynamic clusters

• have proper labels / annotations for different instance types

• you can have many different instance types for different need tries

• make sure that auto scale group

• really can scale to 0 instances, if you have the case

• scale down with speed make sense

•

!13

Copyright © 2018 Apomaya

kubernetes look to
• for predictive runtimes

• set CPU/memory request == limit

• stability

• OOM protection see above

• volumes with size

• JVM parameter must fit to limits (enough headroom for overhead / off heap)

• use persistent state

• look to StatefullSet

• stop and (re)start without disk data lost

•

!14

Copyright © 2018 Apomaya

HA per job needed?
• really multi AZ needed?

• pod failure can be handled by spark / flink

• like single node failure

• does not restart the hole job on AZ failure is ok?

• on AZ failure anyhow 30-50% of job is lost

• lower network latency, save network cost

• need zookeeper persistent or can ran only in memory?

•

!15

Copyright © 2018 Apomaya

flink
• flink 1.5 make it simpler (FLIP-6)

• HTTP/REST for all external communication

• S3 for checkpoint, snapshot,… see netflix : https://de.slideshare.net/
FlinkForward/flink-forward-san-francisco-2018-steven-wu-scaling-flink-in-
cloud

• Flink Forward Berlin 2017: Patrick Lucas - Flink in Containerland, https://
de.slideshare.net/FlinkForward/flink-forward-berlin-2017-patrick-lucas-
flink-in-containerland

!16

Copyright © 2018 Apomaya

spark

• shuffle

• external shuffle service?

• have sufficient local disk space for S3 based job output committer

!17

Copyright © 2018 Apomaya

Logging / Monitoring
• Routing logs

• fluentd (assign tags, routing,…)

• Monitoring / Metrics

• Prometheus first choice at Kubernetes

• it pulls (scrape) data from sources

• push gateway for push

• Grafana visualization / alternating

• are health check sufficient?

!18

Copyright © 2018 Apomaya

S3
• if performance problems

• object name distribution: https://docs.aws.amazon.com/AmazonS3/latest/dev/request-
rate-perf-considerations.html

• S3Guard: http://hadoop.apache.org/docs/r3.0.2/hadoop-aws/tools/hadoop-aws/
s3guard.html

• https://de.slideshare.net/FlinkForward/flink-forward-san-francisco-2018-steven-wu-
scaling-flink-in-cloud

• http://www.yonatanwilkof.net/spark-s3-parquet-aws-commiter-reliable-file-system-hdfs-
hadoop-netfix/

• list of objects (data set is in the list and you select and filter on them)

!19

Copyright © 2018 Apomaya

HDFS
• if S3 drive you crazy

• does run your job only on small time per day

• HDFS on demand

• run it only if you need

• stop if not used

• then only billed by EBS but no EC2

• if don’t need persistent across restarts

• could use local storage of nodes

• via a helper app, jobs can request that HDFS is get up

!20

Copyright © 2018 Apomaya

stream app with
external worker

• stream app run long time

• if you have large load difference over day time

• auto scale cluster resources at runtime is a challenge

• resources need to be configured for highest load

• if you offload the heavy resource part to an external micro service behind a load
balancer

• you can scale them up and down independent of the stream cluster

• stream cluster must only configured for the maximum orchestration load

!21

Copyright © 2018 Apomaya

Think different

Thank you

Questions?

!22

